Have a personal or library account? Click to login

Automatic Detection of Faults in Simulated Race Walking from a Fixed Smartphone Camera

Open Access
|Mar 2024

References

  1. World Athletics (2023), C1.1 & C2.1 Competition Rules & Technical Rules. Retrieved from https://www.worldathletics.org/about-iaaf/documents/book-of-rules (Accessed: 2023/09/04).
  2. Brooks, J. (2019). COCO Annotator. https://github.com/jsbroks/coco-annotator/.
  3. Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., & Sheikh, Y. A. (2019). Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence.
  4. Cheng, B., Xiao, B., Wang, J., Shi, H., Huang, T. S., & Zhang, L. (2020). HigherHRNet: Scale-aware representation learning for bottom-up human pose estimation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 5386–5395).
  5. Contributors, M. (2020). Openmmlab pose estimation toolbox and benchmark. https://github.com/open-mmlab/mmpose.
  6. Díaz-Pereira, M. P., Gomez-Conde, I., Escalona, M., & Olivieri, D. N. (2014). Automatic recognition and scoring of olympic rhythmic gymnastic movements. Human movement science, 34, 63–80.
  7. Di Gironimo, G., Caporaso, T., Amodeo, G., Del Giudice, D. M., Lanzotti, A., & Odenwald, S. (2016). Outdoor tests for the validation of an inertial system able to detect illegal steps in race-walking. Procedia engineering, 147, 544–549.
  8. Gomez-Ezeiza, J., Torres-Unda, J., Tam, N., Irazusta, J., Granados, C., & Santos-Concejero, J. (2018). Race walking gait and its influence on race walking economy in world-class race walkers. Journal of sports sciences, 36 (19), 2235–2241.
  9. Hanley, B., Tucker, C. B., & Bissas, A. (2019). Assessment of iaaf raeewalk judges’ ability to detect legal and non-legal technique. Frontiers in sports and active living, 9.
  10. Hoga-Miura, K., Hirokawa, R., & Sugita, M. (2017). Reconstruction of walking motion without flight phase by using computer simulation on the world elite 20 km race walkers during official races. Slovak Journal of Sport Science, 2 (1), 59–75.
  11. Knicker, A., & Loch, M. (1990). Race walking technique and judging-the final report to the international athletic foundation research project. New Studies in Athletics, 5 (3), 25–38.
  12. Lee, J. B., Mellifont, R. B., Burkett, B. J., & James, D. A. (2013). Detection of illegal race walking: a tool to assist coaching and judging. Sensors, 13 (12), 16065–16074.
  13. Lin, T.-Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., . . . Zitnick, C. L. (2014). Microsoft coco: Common objects in context. In European conference on computer vision (pp. 740–755).
  14. Ludwig, K., Scherer, S., Einfalt, M., & Lienhart, R. (2021). Self-supervised learning for human pose estimation in sports. In 2021 ieee international conference on multimedia & expo workshops (icmew) (pp. 1 6).
  15. Menting, S. G. P., Hanley, B., Elferink-Gemser, M. T., & Hettinga, F. J. (2022). Pacing behaviour of middle-long distance running & race-walking athletes at the iaaf u18 and u20 world championship finals. European Journal of Sport Science, 22 (6), 780–789.
  16. Pavei, G., & La Torre, A. (2016). The effects of speed and performance level on race walking kinematics. Sport Sciences for Health, 12 (1), 35–47.
  17. Santoso, D. R., & Setyanto, T. A. (2013). Development of precession instrumentation system for differentiate walking from running in race walking by using piezoelectric sensor. Sensors & Transducers, 155 (8), 120.
  18. Suzuki, T., Takeda, K., & Fujii, K. (2022). Automatic fault detection in race walking from a smartphone camera via fine-tuning pose estimation. In 2022 IEEE 11th Global Conference on Consumer Electronics (GCCE) (pp. 631-632).
  19. Taborri, J., Palermo, E., & Rossi, S. (2019). Automatic detection of faults in race walking: A comparative analysis of machine-learning algorithms fed with inertial sensor data. Sensors, 19 (6), 1461.
  20. Uchida, I., Scott, A., Shishido, H., & Kameda, Y. (2021). Automated offside detection by spatio-temporal analysis of football videos. In Proceedings of the 4th international workshop on multimedia content analysis in sports (pp. 17–24).
  21. Vapnik, V. (1999). The nature of statistical learning theory. In (p. 138). Springer science & business media.
  22. Wu, Y., Kirillov, A., Massa, F., Lo, W.-Y., & Girshick, R. (2019). Detectron2. https://github.com/facebookresearch/detectron2.
  23. Xu, C., Fu, Y., Zhang, B., Chen, Z., Jiang, Y.-G., & Xue, X. (2019). Learning to score figure skating sport videos. IEEE transactions on circuits and systems for video technology, 30 (12), 4578–4590.
Language: English
Page range: 22 - 36
Published on: Mar 9, 2024
Published by: International Association of Computer Science in Sport
In partnership with: Paradigm Publishing Services
Publication frequency: 2 times per year

© 2024 Tomohiro Suzuki, Kazuya Takeda, Keisuke Fujii, published by International Association of Computer Science in Sport
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.