Ahsan-ul-Haq, M., Al-Bossly, A., El-Morshedy, M., & Eliwa, M. S. (2022). Poisson XLindley distribution for count data: statistical and reliability properties with estimation techniques and inference. Computational Intelligence and neuroscience, 2022(1), 6503670.
Boshnakov, G., Kharrat, T., & McHale, I. G. (2017). A bivariate Weibull count model for forecasting association football scores. International Journal of Forecasting, 33(2), 458-466.
Chouia, S., & Zeghdoudi, H. (2021). The XLindley distribution: Properties and application. Journal of Statistical Theory and Applications, 20(2), 318-327.
Constantinou, A. C., Fenton, N. E., & Neil, M. (2012). pi-football: A Bayesian network model for forecasting Association Football match outcomes. Knowledge-Based Systems, 36, 322-339.
McNeil, D. (1979). A QUICK TEST OF FIT OF A BIVARIATE DISTRIBUTION. In Interactive Statistics: Proceedings of the Applied Statistics Conference, Sydney, February 8-9, 1979 (p. 185). North-Holland.
Dixon, M. J., Coles, S. G. (1997). Modelling association football scores andinefficiencies in the football betting market. Applied Statistics, 46(2), 265.
Goddard, J. (2005). Regression models for forecasting goals and matchresults in association football. International Journal of Forecasting, 21(2), 331-340.
Jung, B.C., M. Jhun and S.M. Han, (2009). Score test for overdispersionin the bivariate negative binomial models. J. Statist. Comput. Simulat., 79:11-24.
Karlis, D., &Ntzoufras, I. (2009). Bayesian modelling of football outcomes: using the Skellam.s distribution for the goal difference. IMA Journal of Management Mathematics, 20(2), 133-145.
Khodja, N., Gemeay, A. M., Zeghdoudi, H., Karakaya, K., Alshangiti, A. M., Bakr, M. E., Hussam, E. (2023). Modeling voltage real data set by a new version of Lindley distribution. IEEE Access, 11, 67220-67229.
Lord, D. and S.R. Geedipally, (2011). The negative binomial-Lindley distribution as a tool for analyzing crash data characterized by a large amount of zeros. Accident Anal. Prevent., 43: 1738-1742.
Loukas S. and Kemp C. D. (1986), The Index of Dispersion Test for the Bivariate Poisson Distribution. International Biometric Society, Vol. 42, No. 4,pp. 941-948.
Marek, P., .edivá, B., & µToupal, T. (2014). Modeling and prediction of icehockey match results. Journal of quantitative analysis in sports, 10(3), 357-365.
Owen, A. (2011). Dynamic Bayesian forecasting models of football matchoutcomes with estimation of the evolution variance parameter. IMA Journal of Management Mathematics, 22(2), 99-113.
Paul, S.R. and N.I. Ho, (1989). Estimation in the bivariate poisson distribution and hypothesis testingconcerning independence. Communicat. Statist.Theory Methods. 18: 1123-1133.
Reep, C., & Benjamin, B. (1968). Skill and chance in association football. Journal of the Royal Statistical Society. Series A (General), 131(4), 581-585.
Sadeghkhani, A., & Ahmed, S. E. (2020). The application of predictive distribution estimation in multiple-inflated poisson models to ice hockey data. Model Assisted Statistics and Applications, 15(2), 127-137.
Seghier, F. Z., Zeghdoudi, H., & Raman, V. (2023). A Novel Discrete Distribution: Properties and Application Using Nipah Virus Infection Data Set. European Journal of Statistics, 3, 3-3.
Seghier, F. Z., Ahsan-ul-Haq, M., Zeghdoudi, H., & Hashmi, S. (2023). A new generalization of poisson distribution for over-dispersed, count data: mathematical properties, regression model and applications. Lobachevskii Journal of Mathematics, 44(9), 3850-3859.
Tsokos, A., Narayanan, S., Kosmidis, I., Baio, G., Cucuringu, M., Whitaker, G., & Király, F. (2019). Modeling outcomes of soccer matches. Machine Learning, 108, 77-95.
Zamani, H., Faroughi, P., & Ismail, N. (2014, June). Bivariate Poisson-weighted exponential distribution with applications. In AIP Conference Proceedings (Vol. 1602, No. 1, pp. 964-968). American Institute of Physics.
Zamani, H., P. Faroughi and N. Ismail, (2015). Bivariate Poisson-Lindley Distribution with Application, Journal of Mathematics and Statistics, 11 (1): 1-6.
Zeghdoudi, H., & Nedjar, S. (2017). On Poisson pseudo Lindley distribution: Properties and applications. Journal of probability and statistical science, 15(1), 19-28.
Shahin, S. (2023). Sports Data Analysis by using Bivariate Poisson Models in the Bayesian Framework. Quaid-e-Awam University Research Journal of Engineering Science and Technology, 21(1), 7-15.
Singh, A., Scarf, P., & Baker, R. (2023). A unified theory for bivariate scores in possessive ball-sports: the case of handball. European Journal of Operational Research, 304(3), 1099-1112.