Have a personal or library account? Click to login
Estimating the effect of hitting strategies in baseball using counterfactual virtual simulation with deep learning Cover

Estimating the effect of hitting strategies in baseball using counterfactual virtual simulation with deep learning

Open Access
|Jan 2023

References

  1. Baumer, B. S. (2009). Using simulation to estimate the impact of baserunning ability in baseball. Journal of Quantitative Analysis in Sports, 5(2).
  2. Beneventano, P., Berger, P. D., & Weinberg, B. D. (2012). Predicting run production and run prevention in baseball: the impact of sabermetrics. Int J Bus Humanit Technol, 2(4), 67–75.
  3. Bukiet, B., Harold, E. R., & Palacios, J. L. (1997). A markov chain approach to baseball. Operations Research, 45(1), 14–23.
  4. Click, J., & Keri, J. (2006). Baseball between the numbers: Why everything you know about the game is wrong.
  5. Perseus Books Group. Costa, G. B., Huber, M. R., & Saccoman, J. T. (2012). Reasoning with sabermetrics: Applying statistical science to baseball’s tough questions.
  6. McFarland. Cover, T. M., & Keilers, C. W. (1977). An off ensive earned-run average for baseball. Operations Research, 25(5), 729 740.
  7. D’esopo, D. (1977). The distribution of runs in the game of baseball. Optimal Strategies in Sports, Ladany.
  8. Forrest, D., Beaumont, J., Goddard, J., & Simmons, R. (2005). Home advantage and the debate about competitive balance in professional sports leagues. Journal of Sports Sciences, 23(4), 439–445.
  9. Freeze, R. A. (1974). An analysis of baseball batting order by monte carlo simulation. Operations Research, 22(4), 728–735.
  10. Fujii, K., Takeuchi, K., Kuribayashi, A., Takeishi, N., Kawahara, Y., & Takeda, K. (2022). Estimating counterfactual treatment outcomes over time in complex multi-agent scenarios. arXiv preprint arXiv:2206.01900.
  11. Gibbs, C., Elmore, R., & Fosdick, B. (2020). The causal eff ect of a timeout at stopping an opposing run in the nba. arXiv preprint arXiv:2011.11691.
  12. Hirotsu, N., & Bickel, J. E. (2019). Using a markov decision process to model the value of the sacrifice bunt. Journal of Quantitative Analysis in Sports, 15(4), 327–344.
  13. Hirotsu, N., & Eric Bickel, J. (2016). Optimal batting orders in run-limit-rule baseball: a markov chain approach. IMA Journal of Management Mathematics, 27(2), 297–313.
  14. Hirotsu, N., & Wright, M. (2003). A markov chain approach to optimal pinch hitting strategies in a designated hitter rule baseball game. Journal of the Operations Research Society of Japan, 46(3), 353–371.
  15. Hirotsu, N., & Wright, M. (2005). Modelling a baseball game to optimise pitcher substitution strategies incorporating handedness of players. IMA Journal of Management Mathematics, 16(2), 179–194.
  16. Hirukawa, K. (2019). Introduction to sabermetrics. Suiyosha.
  17. James, B. (2010). The new bill james historical baseball abstract. Simon and Schuster.
  18. Lewis, M. (2004). Moneyball: The art of winning an unfair game. WW Norton & Company.
  19. MLB.com. (2015a). Expected era (xera). Retrieved from https://www.mlb.com/glossary/statcast/expected-era.
  20. MLB.com. (2015b). Expected weighted on-base average (xwoba). Retrieved from https://www.mlb.com/glossary/statcast/expected-woba.
  21. MLB.com. (2022a). On-base average (obp). Retrieved from https://www.mlb.com/glossary/standard-stats/on-base-percentage.
  22. MLB.com. (2022b). Slugging percentage (slg). Retrieved from https://www.mlb.com/glossary/standard-stats/slugging-percentage.
  23. Nakahara, H., Takeda, K., & Fujii, K. (2022a). Evaluating a third base coach’s decision making via game theory and machine learning. MathSport International.
  24. Nakahara, H., Takeda, K., & Fujii, K. (2022b). Pitching strategy evaluation via stratified analysis using propensity score. arXiv preprint arXiv:2208.03492.
  25. Norman, J. M., & Clarke, S. R. (2010). Optimal batting orders in cricket. Journal of the Operational Research Society, 61(6), 980–986.
  26. Okada, Y. (2017). Delta baseball report 1. Suiyosha.
  27. Sokol, J. S. (2003). A robust heuristic for batting order optimization under uncertainty. Journal of Heuristics, 9(4), 353–370.
  28. Sonne, M. W., & Keir, P. J. (2016). Major league baseball pace-of-play rules and their influence on predicted muscle fatigue during simulated baseball games. Journal of sports sciences, 34(21), 2054–2062.
  29. Stuart, E. A. (2010). Matching methods for causal inference: A review and a look forward. Statistical science: a review journal of the Institute of Mathematical Statistics, 25(1), 1.
  30. Tango, T. M., Lichtman, M. G., & Dolphin, A. E. (2007). The book: Playing the percentages in baseball. Potomac Books, Inc.
  31. Toumi, A., & Lopez, M. (2019). From grapes and prunes to apples and apples: Using matched methods to estimate optimal zone entry decision-making in the national hockey league. In Carnegie mellon sports analytics conference 2019.
  32. Vock, D. M., & Vock, L. F. B. (2018). Estimating the eff ect of plate discipline usinga causal inference framework: an application of the g-computation algorithm. Journal of Quantitative Analysis in Sports, 14(2), 37–56.
  33. Yam, D. R., & Lopez, M. J. (2019). What was lost? a causal estimate of fourth down behavior in the national football league. Journal of Sports Analytics, 5(3), 153–167.
Language: English
Page range: 1 - 12
Published on: Jan 17, 2023
Published by: International Association of Computer Science in Sport
In partnership with: Paradigm Publishing Services
Publication frequency: 2 times per year

© 2023 Hiroshi Nakahara, Kazuya Takeda, Keisuke Fujii, published by International Association of Computer Science in Sport
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.