Have a personal or library account? Click to login
Success-Score in Professional Soccer – Validation of a Dynamic Key Performance Indicator Combining Space Control and Ball Control within Goalscoring Opportunities
Alves, D. L., Osiecki, R., Palumbo, D. P., Moiano-Junior, J. V. M., Oneda, G., & Cruz, R. (2019). What variables can differentiate winning and losing teams in the group and final stages of the 2018 FIFA World Cup? International Journal of Performance Analysis in Sport, 19(2), 248–257. https://doi.org/10.1080/24748668.2019.159309610.1080/24748668.2019.1593096
Biermann, H., Theiner, J., Bassek, M., Raabe, D., Memmert, D., & Ewerth, R. (2021). A Unified Taxonomy and Multimodal Dataset for Events in Invasion Games. In Proceedings of the 4th International Workshop on Multimedia Content Analysis in Sports.10.1145/3475722.3482792
Caicedo-Parada, S., Lago-Peñas, C., & Ortega-Toro, E. (2020). Passing Networks and Tactical Action in Football: A Systematic Review. International Journal of Environmental Research and Public Health, 17(18), 6649. https://doi.org/10.3390/ijerph1718664910.3390/ijerph17186649755998632933080
Castellano, J., & Pic, M. (2019). Identification and Preference of Game Styles in LaLiga Associated with Match Outcomes. International Journal of Environmental Research and Public Health, 16(24), 5090. https://doi.org/10.3390/ijerph1624509010.3390/ijerph16245090695029931847147
Hassan, A., Schrapf, N., & Tilp, M. (2017a). The prediction of action positions in team handball by non-linear hybrid neural networks. International Journal of Performance Analysis in Sport, 17(3), 293–302.10.1080/24748668.2017.1336688
Hassan, A., Schrapf, N., Ramadan, W., & Tilp, M. (2017b). Evaluation of tactical training in team handball by means of artificial neural networks. Journal of Sports Sciences, 35(7), 642–647.10.1080/02640414.2016.118380427211106
Jamil, M., Phatak, A., Mehta, S., Beato, M., Memmert, D., & Connor, M. (2021). Using multiple machine learning algorithms to classify elite and sub-elite goalkeepers in professional men’s football. Scientific reports, 11(1), 1-7.10.1038/s41598-021-01187-5860902534811371
Kempe, M., Vogelbein, M., Memmert, D., & Nopp, S. (2014). Possession vs. Direct Play: Evaluating Tactical Behavior in Elite Soccer. International Journal of Sports Science, 4(6A), 35–41. http://dx.doi.org/10.5923/s.sports.201401.05
Lago-Peñas, C., Lago-Ballesteros, J., & Rey, E. (2011). Differences in performance indicators between winning and losing teams in the UEFA Champions League. Journal of Human Kinetics, 27(2011), 135–146. https://doi.org/10.2478/v10078-011-0011-310.2478/v10078-011-0011-3
Liu, H., Yi, Q., Giménez, J.-V., Gómez, M.-A., & Lago-Peñas, C. (2015). Performance profiles of football teams in the UEFA Champions League considering situational efficiency. International Journal of Performance Analysis in Sport, 15(1), 371–390. https://doi.org/10.1080/24748668.2015.1186879910.1080/24748668.2015.11868799
Liu, T., Yang, L., Chen, H., & García-de-Alcaraz, A. (2021). Impact of Possession and Player Position on Physical and Technical-Tactical Performance Indicators in the Chinese Football Super League. Frontiers in Psychology, 12, 722200. https://doi.org/10.3389/fpsyg.2021.72220010.3389/fpsyg.2021.722200851140134659035
Memmert, D., & Raabe, D. (2018). Data Analytics in Football. Positional Data Collection, Modelling and Analysis. Abingdon: Routledge.10.4324/9781351210164
Memmert, D., Lemmink, K. A. P. M., & Sampaio, J. (2017). Current Approaches to Tactical Performance Analyses in Soccer using Position Data. Sports Medicine, 47(1), 1-10.10.1007/s40279-016-0562-527251334
Perl, J., & Memmert, D. (2011). Net-Based Game Analysis by Means of the Software Tool SOCCER. International Journal of Computer Science in Sport, 10(2), 77–84.
Perl, J., & Memmert, D. (2017). A Pilot Study on Offensive Success in Soccer Based on Space and Ball Control – Key Performance Indicators and Key to Understand Game Dynamics. International Journal of Computer Science in Sport, 16(1), 65–75. https://doi.org/10.1515/ijcss-2017-000510.1515/ijcss-2017-0005
Perl, J., & Memmert, D. (2018). Soccer: Process and interaction. In A. Baca & J. Perl, Modelling and Simulation in Sport and Exercise (S. 73–94). Routledge.10.4324/9781315163291-4
Perl, J., Grunz, A., & Memmert, D. (2013). Tactics Analysis in Soccer – An Advanced Approach. International Journal of Computer Science in Sport, 12(1), 33–44.
Raabe, D., Nabben, R., & Memmert, D. (2022). Graph Representations for the Analysis of Multi-Agent Spatiotemporal Sports Data. Applied Intelligence, 1-21.10.1007/s10489-022-03631-z
Schrapf, N., Alsaied, S., & Tilp, M. (2017). Tactical interaction of offensive and defensive teams in team handball analysed by artificial neural networks. Mathematical and Computer Modelling of Dynamical Systems, 23(4), 363–371.10.1080/13873954.2017.1336733
Vogelbein, M., Nopp, S., & Hökelmann, A. (2014). Defensive transition in soccer – are prompt possession regains a measure of success? A quantitative analysis of German Fußball-Bundesliga 2010/2011. Journal of Sports Sciences, 32(11), 1076–1083. https://doi.org/10.1080/02640414.2013.87967110.1080/02640414.2013.87967124506111
Wunderlich, F., Seck, A., & Memmert, D. (2021). The influence of randomness on goals in football decreases over time. An empirical analysis of randomness involved in goal scoring in the English Premier League. Journal of Sports Sciences, 39(20), 2322–2337. https://doi.org/10.1080/02640414.2021.193068510.1080/02640414.2021.193068534024249
Zhou, C., Lago-Peñas, C., Lorenzo, A., & Gómez, M.-Á. (2021). Long-Term Trend Analysis of Playing Styles in the Chinese Soccer Super League. Journal of Human Kinetics, 79(1), 237–247. https://doi.org/10.2478/hukin-2021-007710.2478/hukin-2021-0077833654434401003