Ahmad, M. W., Reynolds, J., & Rezgui, Y. (2018). Predictive modelling for solar thermal energy systems: A comparison of support vector regression, random forest, extra trees and regression trees. Journal of cleaner production, 203, 810–821.10.1016/j.jclepro.2018.08.207
Brink, M. S., Visscher, C., Arends, S., Zwerver, J., Post, W. J., & Lemmink, K. A. (2010). Monitoring stress and recovery: New insights for the prevention of injuries and illnesses in elite youth soccer players. British journal of sports medicine, 44(11), 809–815.10.1136/bjsm.2009.06947620511621
Brownstein, C. G., Dent, J. P., Parker, P., Hicks, K. M., Howatson, G., Goodall, S., & Thomas, K. (2017). Etiology and recovery of neuromuscular fatigue following competitive soccer match-play. Frontiers in physiology, 8, 831.10.3389/fphys.2017.00831566100129118716
Bunker, R. P., & Thabtah, F. (2019). A machine learning framework for sport result prediction. Applied computing and informatics, 15(1), 27–33.10.1016/j.aci.2017.09.005
Camacho, D. M., Collins, K. M., Powers, R. K., Costello, J. C., & Collins, J. J. (2018). Next-generation machine learning for biological networks. Cell, 173(7), 1581–1592.10.1016/j.cell.2018.05.01529887378
Carling, C., Lacome, M., McCall, A., Dupont, G., Le Gall, F., Simpson, B., & Buchheit, M. (2018). Monitoring of post-match fatigue in professional soccer: Welcome to the real world. Sports Medicine, 48(12), 2695–2702.10.1007/s40279-018-0935-z624461629740792
Cawley, G. C., & Talbot, N. L. (2010). On over-fitting in model selection and subsequent selection bias in performance evaluation. The Journal of Machine Learning Research, 11, 2079–2107.
Clemente, F. M., Figueiredo, A. J., Martins, F. M. L., Mendes, R. S., & Wong, D. P. (2016). Physical and technical performances are not associated with tactical prominence in U14 soccer matches. Research in Sports Medicine, 24(4), 352–362.10.1080/15438627.2016.122227727533018
De Beéck, T. O., Jaspers, A., Brink, M. S., Frencken, W. G., Staes, F., Davis, J. J., & Helsen, W. F. (2019). Predicting future perceived wellness in professional soccer: The role of preceding load and wellness. International Journal of Sports Physiology and Performance, 14(8), 1074–1080.10.1123/ijspp.2017-086430702339
Fell, J., & Williams, A. D. (2008). The effect of aging on skeletal-muscle recovery from exercise: Possible implications for aging athletes. Journal of Aging and Physical Activity, 16(1), 97–115.10.1123/japa.16.1.9718268815
Ferreira, P., Le, D. C., & Zincir-Heywood, N. (2019). Exploring feature normalization and temporal information for machine learning based insider threat detection. 2019 15th International Conference on Network and Service Management (CNSM), 1–7.10.23919/CNSM46954.2019.9012708
Fessi, M. S., Nouira, S., Dellal, A., Owen, A., Elloumi, M., & Moalla, W. (2016). Changes of the psychophysical state and feeling of wellness of professional soccer players during pre-season and in-season periods. Research in Sports Medicine, 24(4), 375–386.10.1080/15438627.2016.122227827574867
Foster, C., Hector, L. L., Welsh, R., Schrager, M., Green, M. A., & Snyder, A. C. (1995). Effects of specific versus cross-training on running performance. European journal of applied physiology and occupational physiology, 70(4), 367–372.10.1007/BF008650357649149
Gabbett, T. J. (2016). The training—Injury prevention paradox: Should athletes be training smarter and harder? British journal of sports medicine, 50(5), 273–280.10.1136/bjsports-2015-095788478970426758673
Gjaka, M., Tschan, H., Francioni, F. M., Tishkuaj, F., & Tessitore, A. (2016). MONITORING OF LOADS AND RECOVERY PERCEIVED DURING WEEKS WITH DIFFERENT SCHEDULE IN YOUNG SOCCER PLAYERS. Kinesiologia Slovenica, 22(1).
Hader, K., Rumpf, M. C., Hertzog, M., Kilduff, L. P., Girard, O., & Silva, J. R. (2019). Monitoring the athlete match response: Can external load variables predict post-match acute and residual fatigue in soccer? A systematic review with meta-analysis. Sports medicine-open, 5(1), 1–19.10.1186/s40798-019-0219-7690163431820260
Halson, S. L. (2014). Monitoring training load to understand fatigue in athletes. Sports medicine, 44(2), 139–147.10.1007/s40279-014-0253-z421337325200666
Impellizzeri, F. M., Rampinini, E., Coutts, A. J., Sassi, A., & Marcora, S. M. (2004). Use of RPE-based training load in soccer. Medicine & Science in sports & exercise, 36(6), 1042–1047.10.1249/01.MSS.0000128199.23901.2F
Impellizzeri, F. M., Rampinini, E., & Marcora, S. M. (2005). Physiological assessment of aerobic training in soccer. Journal of sports sciences, 23(6), 583–592.10.1080/0264041040002127816195007
Jaspers, A., De Beéck, T. O., Brink, M. S., Frencken, W. G., Staes, F., Davis, J. J., & Helsen, W. F. (2018). Relationships between the external and internal training load in professional soccer: What can we learn from machine learning? International journal of sports physiology and performance, 13(5), 625–630.10.1123/ijspp.2017-029929283691
Johnson, D. R., & Creech, J. C. (1983). Ordinal measures in multiple indicator models: A simulation study of categorization error. American Sociological Review, 398–407.10.2307/2095231
Jones, C. M., Griffiths, P. C., & Mellalieu, S. D. (2017). Training load and fatigue marker associations with injury and illness: A systematic review of longitudinal studies. Sports medicine, 47(5), 943–974.10.1007/s40279-016-0619-5539413827677917
Kalkhoven, J. T., Watsford, M. L., Coutts, A. J., Edwards, W. B., & Impellizzeri, F. M. (2021). Training load and injury: Causal pathways and future directions. Sports Medicine, 51(6), 1137–1150.10.1007/s40279-020-01413-633400216
Kang, H. (2013). The prevention and handling of the missing data. Korean journal of anesthesiology, 64(5), 402.10.4097/kjae.2013.64.5.402366810023741561
Kensert, A., Alvarsson, J., Norinder, U., & Spjuth, O. (2018). Evaluating parameters for ligand-based modeling with random forest on sparse data sets. Journal of cheminformatics, 10(1), 1–10.10.1186/s13321-018-0304-9675560030306349
Lacome, M., Simpson, B., Broad, N., & Buchheit, M. (2018). Monitoring players’ readiness using predicted heart-rate responses to soccer drills. International Journal of Sports Physiology and Performance, 13(10), 1273–1280.10.1123/ijspp.2018-002629688115
Malone, S., Owen, A., Newton, M., Mendes, B., Collins, K. D., & Gabbett, T. J. (2017). The acute: Chonic workload ratio in relation to injury risk in professional soccer. Journal of science and medicine in sport, 20(6), 561–565.10.1016/j.jsams.2016.10.01427856198
Malone, S., Owen, A., Newton, M., Mendes, B., Tiernan, L., Hughes, B., & Collins, K. (2018). Wellbeing perception and the impact on external training output among elite soccer players. Journal of science and medicine in sport, 21(1), 29–34.10.1016/j.jsams.2017.03.01928442275
Mandorino, M., Figueiredo, A. J., Cima, G., & Tessitore, A. (2021). A Data Mining Approach to Predict Non-Contact Injuries in Young Soccer Players. International Journal of Computer Science in Sport, 20(2), 147–163.10.2478/ijcss-2021-0009
Mandorino, M., Figueiredo, A. J., Cima, G., & Tessitore, A. (2022a). Predictive Analytic Techniques to Identify Hidden Relationships between Training Load, Fatigue and Muscle Strains in Young Soccer Players. Sports, 10(1), 3.10.3390/sports10010003882288835050968
Mandorino, M., Figueiredo, A. J., Cima, G., & Tessitore, A. (2022b). The Impact of External and Internal Load on Recovery Status of Adult Soccer Players: A Machine Learning Approach. International Conference on Security, Privacy, and Anonymity in Computation, Communication, and Storage, 122–125.10.1007/978-3-030-99333-7_20
Mandorino, M., Figueiredo, A. J., Condello, G., & Tessitore, A. (2022). The influence of maturity on recovery and perceived exertion, and its relationship with illnesses and non-contact injuries in young soccer players. Biology of Sport, 39(4), 839–848.10.5114/biolsport.2022.109953953636936247948
Murray, N. B., Gabbett, T. J., Townshend, A. D., & Blanch, P. (2017). Calculating acute: Chronic workload ratios using exponentially weighted moving averages provides a more sensitive indicator of injury likelihood than rolling averages. British Journal of Sports Medicine, 51(9), 749–754.10.1136/bjsports-2016-09715228003238
Murugesan, G., Saghafi, B., Davenport, E., Wagner, B., Urban, J., Kelley, M., Jones, D., Powers, A., Whitlow, C., & Stitzel, J. (2018). Single season changes in resting state network power and the connectivity between regions distinguish head impact exposure level in high school and youth football players. Medical Imaging 2018: Computer-Aided Diagnosis, 10575, 105750F.
Nikolaidis, P. T., Clemente, F. M., van der Linden, C. M., Rosemann, T., & Knechtle, B. (2018). Validity and reliability of 10-Hz global positioning system to assess in-line movement and change of direction. Frontiers in physiology, 9, 228.10.3389/fphys.2018.00228586286529599725
Norman, G. (2010). Likert scales, levels of measurement and the “laws” of statistics. Advances in health sciences education, 15(5), 625–632.10.1007/s10459-010-9222-y20146096
Ray, S. (2019). A quick review of machine learning algorithms. 2019 International conference on machine learning, big data, cloud and parallel computing (COMITCon), 35–39.10.1109/COMITCon.2019.8862451
Rhemtulla, M., Brosseau-Liard, P. É., & Savalei, V. (2012). When can categorical variables be treated as continuous? A comparison of robust continuous and categorical SEM estimation methods under suboptimal conditions. Psychological methods, 17(3), 354.10.1037/a002931522799625
Robitzsch, A. (2020). Why ordinal variables can (almost) always be treated as continuous variables: Clarifying assumptions of robust continuous and ordinal factor analysis estimation methods. Frontiers in Education, 5, 177.10.3389/feduc.2020.589965
Rossi, A., Pappalardo, L., Cintia, P., Iaia, F. M., Fernández, J., & Medina, D. (2018). Effective injury forecasting in soccer with GPS training data and machine learning. PloS one, 13(7), e0201264.10.1371/journal.pone.0201264605946030044858
Rossi, A., Perri, E., Pappalardo, L., Cintia, P., & Iaia, F. M. (2019). Relationship between External and Internal Workloads in Elite Soccer Players: Comparison between Rate of Perceived Exertion and Training Load. Applied Sciences, 9(23), 5174.10.3390/app9235174
Sansone, P., Tschan, H., Foster, C., & Tessitore, A. (2020). Monitoring training load and perceived recovery in female basketball: Implications for training design. The Journal of Strength & Conditioning Research.10.1519/JSC.000000000000297130589724
Saw, A. E., Main, L. C., & Gastin, P. B. (2016). Monitoring the athlete training response: Subjective self-reported measures trump commonly used objective measures: A systematic review. British journal of sports medicine, 50(5), 281–291.10.1136/bjsports-2015-094758478970826423706
Sawczuk, T., Jones, B., Scantlebury, S., & Till, K. (2018). Relationships between training load, sleep duration, and daily well-being and recovery measures in youth athletes. Pediatric exercise science, 30(3), 345–352.10.1123/pes.2017-019029478381
Selmi, O., Gonçalves, B., Ouergui, I., Sampaio, J., & Bouassida, A. (2018). Influence of well-being variables and recovery state in physical enjoyment of professional soccer players during small-sided games. Research in Sports Medicine, 26(2), 199–210.10.1080/15438627.2018.143154029376416
Selmi, O., Ouergui, I., Castellano, J., Levitt, D., & Bouassida, A. (2020). Effect of an intensified training period on well-being indices, recovery and psychological aspects in professional soccer players. European Review of Applied Psychology, 70(6), 100603.10.1016/j.erap.2020.100603
Shan, G., Zhang, H., & Jiang, T. (2020). Correlation coefficients for a study with repeated measures. Computational and mathematical methods in medicine, 2020.10.1155/2020/7398324713676132300374
Singh, D., & Singh, B. (2020). Investigating the impact of data normalization on classification performance. Applied Soft Computing, 97, 105524.10.1016/j.asoc.2019.105524
Tessitore, A., Meeusen, R., Cortis, C., & Capranica, L. (2007). Effects of different recovery interventions on anaerobic performances following preseason soccer training. The Journal of Strength & Conditioning Research, 21(3), 745–750.10.1519/00124278-200708000-00015
Thorpe, R. T., Strudwick, A. J., Buchheit, M., Atkinson, G., Drust, B., & Gregson, W. (2015). Monitoring fatigue during the in-season competitive phase in elite soccer players. International journal of sports physiology and performance, 10(8), 958–964.10.1123/ijspp.2015-000425710257
Thorpe, R. T., Strudwick, A. J., Buchheit, M., Atkinson, G., Drust, B., & Gregson, W. (2017). The influence of changes in acute training load on daily sensitivity of morning-measured fatigue variables in elite soccer players. International journal of sports physiology and performance, 12(s2), S2-107-S2-113.10.1123/ijspp.2016-043327918668
Vescovi, J. D., Klas, A., & Mandic, I. (2019). Investigating the relationships between load and recovery in women’s field hockey–Female Athletes in Motion (FAiM) study. International Journal of Performance Analysis in Sport, 19(5), 672–682.10.1080/24748668.2019.1647731
Zhang, C.-X., Wang, G.-W., & Zhang, J.-S. (2012). An empirical bias–variance analysis of DECORATE ensemble method at different training sample sizes. Journal of Applied Statistics, 39(4), 829–850.10.1080/02664763.2011.620949