Have a personal or library account? Click to login
Automatic Classification of Locomotion in Sport: A Case Study from Elite Netball. Cover

Automatic Classification of Locomotion in Sport: A Case Study from Elite Netball.

By: P.D. Smith and  A. Bedford  
Open Access
|Dec 2020

References

  1. Ahmadi, A., Mitchell, E., Richter, C., Destelle, F., Gowing, M., O’Connor, N. E., & Moran, K. (2015). Toward Automatic Activity Classification and Movement Assessment During a Sports Training Session. IEEE Internet of Things Journal, 2(1), 23-32. doi:10.1109/jiot.2014.237723810.1109/JIOT.2014.2377238
  2. Ahmadi, A., & Rowlands, D. (2010). Development of inertial and novel marker-based techniques and analysis for upper arm rotational velocity measurements in tennis. Sports Engineering, 12, 179-188. doi:10.1007/s12283-010-0044-110.1007/s12283-010-0044-1
  3. Altun, K., Barshan, B., & Tunçel, O. (2010). Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition, 43(10), 3605-3620. doi:10.1016/j.patcog.2010.04.01910.1016/j.patcog.2010.04.019
  4. Amancio, D. R., Comin, C. H., Casanova, D., Travieso, G., Bruno, O. M., Rodrigues, F. A., & Costa Lda, F. (2014). A systematic comparison of supervised classifiers. PLoS One, 9(4), e94137. doi:10.1371/journal.pone.009413710.1371/journal.pone.0094137399894824763312
  5. Anguita, D., Ghio, A., Oneta, L., Parra Parez, X., & Reyes Ortiz, J. (2013). A Public Domain Dataset for Human Activity Recognition Using Smartphones. Paper presented at the European Symposium On Artificaial Neural Networks, Computer Intelligence and Machine Learning, Bruges.
  6. Bailey, J. A., Gastin, P. B., Mackey, L., & Dwyer, D. B. (2017). The Player Load Associated With Typical Activities in Elite Netball. Int J Sports Physiol Perform, 12(9), 1218-1223. doi:10.1123/ijspp.2016-037810.1123/ijspp.2016-037828182504
  7. Bao, L., & Intille, S. (2004). Activity Recognition from User-Annotated Acceleration Data. Paper presented at the Pervasive Computing 2004.10.1007/978-3-540-24646-6_1
  8. Barris, S., & Button, C. (2008). A Review of Vision-Based Motion Analysis in Sport. Sports Medicine, 38(12), 1025-1043.10.2165/00007256-200838120-0000619026019
  9. Barshan, B., & Murat, C. Y. (2014). Recognizing Daily and Sports Activities in Two Open Source Machine Learning Environments Using Body-Worn Sensor Units. The Computer Journal, 57(11), 1649-1657. doi:10.1112/comjnl/bxt075
  10. Bourdon, P. C., Cardinale, M., Murray, A., Gastin, P., Kellmann, M., Varley, M. C., . . . Cable, N. T. (2017). Monitoring Athlete Training Loads: Consensus Statement. Int J Sports Physiol Perform, 12(Suppl 2), S2161-S2170. doi:10.1123/IJSPP.2017-020810.1123/IJSPP.2017-020828463642
  11. Bouten, C. V., Koekkoek, K. T., Verduin, M., Kodde, R., & Janssen, J. D. (1997). A triaxial accelerometer and portable data processing unit for the assessment of daily physical activity. IEEE Trans Biomed Eng, 44(3), 136-147. doi:10.1109/10.55476010.1109/10.5547609216127
  12. Boyd, L., Ball, K., & Aughey, R. J. (2011). Reliability of minimxX accelerometers for measuring physical activity in Australian football. International Journal of Physiology and Performance, 6(3), 311-321.
  13. Bulling, A., Blanke, U., & Schiele, B. (2014). A tutorial on human activity recognition using body-worn inertial sensors. ACM Computing Surveys, 46(3), 1-33. doi:10.1145/249962110.1145/2499621
  14. Buttfield, A., & Ball, K. (2019). The practical application of a method of analysing the variability of within-step accelerations collected via athlete tracking devices. J Sports Sci, 1-8. doi:10.1080/02640414.2019.169998710.1080/02640414.2019.169998731809646
  15. Capela, N. A., Lemaire, E. D., & Baddour, N. (2015). Feature selection for wearable smartphone-based human activity recognition with able bodied, elderly, and stroke patients. PLoS One, 10(4), e0124414. doi:10.1371/journal.pone.012441410.1371/journal.pone.0124414440145725885272
  16. Chambers, R. M., Gabbett, T. J., & Cole, M. H. (2019). Validity of a Microsensor-Based Algorithm for Detecting Scrum Events in Rugby Union. Int J Sports Physiol Perform, 14(2), 176-182. doi:10.1123/ijspp.2018-022210.1123/ijspp.2018-022230039994
  17. Chambers, R. M., Gabbett, T. J., Cole, M. H., & Beard, A. (2015). The Use of Wearable Microsensors to Quantify Sport-Specific Movements. Sports Med, 45(7), 1065-1081. doi:10.1007/s40279-015-0332-910.1007/s40279-015-0332-925834998
  18. Chardonnens, J., Favre, J., Le Callennec, B., Cuendet, F., Gremion, G., & Aminian, K. (2012). Automatic measurement of key ski jumping phases and temporal events with a wearable system. J Sports Sci, 30(1), 53-61. doi:10.1080/02640414.2011.62453810.1080/02640414.2011.62453822168430
  19. Chen, C., Jafari, R., & Kehtarnavaz, N. (2015). A survey of depth and inertial sensor fusion for human action recognition. Multimedia Tools and Applications, 76(3), 4405-4425. doi:10.1007/s11042-015-3177-110.1007/s11042-015-3177-1
  20. Colyer, S. L., Evans, M., Cosker, D. P., & Salo, A. I. T. (2018). A Review of the Evolution of Vision-Based Motion Analysis and the Integration of Advanced Computer Vision Methods Towards Developing a Markerless System. Sports Med Open, 4(1), 24. doi:10.1186/s40798-018-0139-y10.1186/s40798-018-0139-y598669229869300
  21. Coutts, A. J., & Duffield, R. (2010). Validity and reliability of GPS devices for measuring movement demands of team sports. J Sci Med Sport, 13(1), 133-135. doi:10.1016/j.jsams.2008.09.01510.1016/j.jsams.2008.09.01519054711
  22. Cust, E. E., Sweeting, A. J., Ball, K., & Robertson, S. (2019). Machine and deep learning for sport-specific movement recognition: a systematic review of model development and performance. J Sports Sci, 37(5), 568-600. doi:10.1080/02640414.2018.152176910.1080/02640414.2018.152176930307362
  23. Docherty, D., & Neary, P. (1988). Time-motion analysis related to the physiological demands of rugby. Journal of Human Movement Studies, 14, 269-277.
  24. Erdaş, Ç. B., Atasoy, I., Açıcı, K., & Oğul, H. (2016). Integrating Features for Accelerometer-based Activity Recognition. Procedia Computer Science, 98, 522-527. doi:10.1016/j.procs.2016.09.07010.1016/j.procs.2016.09.070
  25. Ermes, M., Parkka, J., Mantyjarvi, J., & Korhonen, I. (2008). Detection of daily activities and sports with wearable sensors in controlled and uncontrolled conditions. Information Technology in Biomedicine, IEEE Transactions, 12(1), 20-26.10.1109/TITB.2007.89949618270033
  26. Fahrenberg, J., Foerster, F., Smeja, M., & Muller, W. (1997). Assessment of posture and motion by multichannel piezoresistive accelerometer recordings.pdf>. Psychophysiology, 34(5), 607-612.10.1111/j.1469-8986.1997.tb01747.x9299915
  27. Fida, B., Bernabucci, I., Bibbo, D., Conforto, S., & Schmid, M. (2015). Varying behavior of different window sizes on the classification of static and dynamic physical activities from a single accelerometer. Med Eng Phys, 37(7), 705-711. doi:10.1016/j.medengphy.2015.04.00510.1016/j.medengphy.2015.04.00525983067
  28. Foina, A. G., Badia, R. M., El-Deeb, A., & Ramirez-Fernandez, F. J. (2010). Player TrackerA Tool to Analyze Sport Players using RFID. Paper presented at the 8th IEEE International Conference on Pervasive Computing and Communications Workshops, Manneheim.
  29. Fox, A., Spittle, M., Otago, L., & Saunders, N. (2013). Activity profiles of the Australian female netball team players during international competition: implications for training practice. J Sports Sci, 31(14), 1588-1595. doi:10.1080/02640414.2013.79294310.1080/02640414.2013.79294323672529
  30. Gabbett, T. (2013). Quantifying the Physical Demands of Collision Sports: Does Microsensor Technology Measure what It Clains To Measure. Journal of Strength and Conditioning Research, 27(8), 2319-2322.10.1519/JSC.0b013e318277fd2123090320
  31. Gastin, P. B., McLean, O. C., Breed, R. V., & Spittle, M. (2014). Tackle and impact detection in elite Australian football using wearable microsensor technology. J Sports Sci, 32(10), 947-953. doi:10.1080/02640414.2013.86892010.1080/02640414.2013.86892024499311
  32. Hsu, Y.-L., Yang, S.-C., Chang, H.-C., & Lai, H.-C. (2018). Human Daily and Sport Activity Recognition Using a Wearable Inertial Sensor Network. IEEE Access, 6, 31715-31728. doi:10.1109/access.2018.283976610.1109/ACCESS.2018.2839766
  33. Jaitner, T., & Gawin, W. (2010). A mobile measure device for the analysis of highly dynamic movement techniques. Procedia Engineering, 2(2), 3005-3010. doi:10.1016/j.proeng.2010.04.10210.1016/j.proeng.2010.04.102
  34. Jennings, D., Cormack, S., Coutts, A., Boyd, L., & Aughey, R., J. (2010). The validity and reliability of GPS units for measuring distance in team sport specific running patterns. International Journal of Sports Physiology and Performance, 5, 328-341.10.1123/ijspp.5.3.32820861523
  35. Karantonis, D. M., Narayanan, M. R., Mathie, M., Lovell, N. H., & Celler, B. G. (2006). Implementation of a real-time human movement classifier using a triaxial accelerometer for ambulatory monitoring. IEEE Trans Inf Technol Biomed, 10(1), 156-167. doi:10.1109/titb.2005.85686410.1109/TITB.2005.85686416445260
  36. Kelly, D., Coughlan, G. F., Green, B. S., & Caulfield, B. (2012). Automatic detection of collisions in elite level rugby union using a wearable sensing device. Sports Engineering, 15(2), 81-92. doi:10.1007/s12283-012-0088-510.1007/s12283-012-0088-5
  37. Khan, M., Ahamed, S. I., Rahman, M., & Smith, R. (2011). A Feature Extraction Method for Realtime Human Activity Recognition on Cell Phones. Mathematics, Statistics and Computer Science Faculty Research and Publications, 183.
  38. Lau, H. Y., Tong, K. Y., & Zhu, H. (2009). Support vector machine for classification of walking conditions of persons after stroke with dropped foot. Hum Mov Sci, 28(4), 504-514. doi:10.1016/j.humov.2008.12.00310.1016/j.humov.2008.12.00319428134
  39. Lee, J. B., Mellifont, R. B., Burkett, B. J., & James, D. A. (2013). Detection of illegal race walking: a tool to assist coaching and judging. Sensors (Basel), 13(12), 16065-16074. doi:10.3390/s13121606510.3390/s131216065389284424287531
  40. Lee, J. B., Mellifont, R. B., James, D. A., & Burkett, B. J. (2007). The Use of Micro-Electro-Mechanical-Systems Technology to Assess Gait Characteristics. In The Impact of Technology on Sport II.10.1201/9781439828427.ch25
  41. Leutheuser, H., Schuldhaus, D., & Eskofier, B. M. (2013). Hierarchical, multi-sensor based classification of daily life activities: comparison with state-of-the-art algorithms using a benchmark dataset. PLoS One, 8(10), e75196. doi:10.1371/journal.pone.007519610.1371/journal.pone.0075196379399224130686
  42. Long, X., Yin, B., & Aarts, R. (2009). Single-accelerometer-based daily physical activity classifications. Paper presented at the Annual Internation Conference of IEEE Engineering in Medicine and Biology Society, Minneapolis, MN.10.1109/IEMBS.2009.533492519965261
  43. Luteberget, L. S., Spencer, M., & Gilgien, M. (2018). Validity of the Catapult ClearSky T6 Local Positioning System for Team Sports Specific Drills, in Indoor Conditions. Front Physiol, 9, 115. doi:10.3389/fphys.2018.0011510.3389/fphys.2018.00115589372329670530
  44. Mathie, M., Coster, A., Lovell, N. H., & Celler, B. G. (2003). Detection of daily physical activities using a triaxial accelerometer. Medical and Biological Engineering and Computing, 41(3), 296-301.10.1007/BF0234843412803294
  45. McNamara, D. J., Gabbett, T. J., Chapman, P., Naughton, G., & Farhart, P. (2015). The validity of microsensors to automatically detect bowling events and counts in cricket fast bowlers. Int J Sports Physiol Perform, 10(1), 71-75. doi:10.1123/ijspp.2014-006210.1123/ijspp.2014-006224911322
  46. Meyhew, S. R., & Wenger, H. A. (1985). Time-motion analysis in professional soccer. Journal of Human Movement Studies, 11, 49-52.
  47. Mitchell, E., Monaghan, D., & O’Connor, N. E. (2013). Classification of sporting activities using smartphone accelerometers. Sensors (Basel), 13(4), 5317-5337. doi:10.3390/s13040531710.3390/s130405317367313923604031
  48. Moeslund, T., Thomas, G., & Hilton, A. (2017). Computer vision in sports. Cham, Switzerland: Springer.
  49. Moran, K., Ahmadi, A., Richter, C., Mitchell, E., Kavanagh, J., & O’Connor, N. (2015). Automatic Detection, Extraction, and Analysis of Landing During a Training Session, Using a Wearable Sensor System. Procedia Engineering, 112, 184-189. doi:10.1016/j.proeng.2015.07.19710.1016/j.proeng.2015.07.197
  50. Neville, J., Wixted, A., Rowlands, D., & James, D. (2010). Accelerometers: An underutilized resource in sports monitoring. Paper presented at the 2010 Sixth International Conference on Intelligent Sensors, Sensor Networks and Information Processing.10.1109/ISSNIP.2010.5706766
  51. Nguyen, L., Rodriguez-Martin, D., Catala, A., Perez-Lopez, C., Sma, A., & Cavallaro, A. (2015). Basketball Activity Recognition using Wearable Inertial Measurement Units. Paper presented at the International Conference on Human Computer Interaction (Interaccion 15).10.1145/2829875.2829930
  52. Ofstad, A., Emmett, N., Szcodronski, R., & Choudhury, R. (2008). AAMPL Accelerometer Augmented Mobile Phone Localization. In Proc. the 1st AGM International workshop on mobile localization and tracking in GPS-less environments, 13-18.
  53. Preece, S. J., Goulermas, J. Y., Kenney, L. P., & Howard, D. (2009). A comparison of feature extraction methods for the classification of dynamic activities from accelerometer data. IEEE Trans Biomed Eng, 56(3), 871-879. doi:10.1109/TBME.2008.200619010.1109/TBME.2008.200619019272902
  54. Randers, M. B., Mujika, I., Hewitt, A., Santisteban, J., Bischoff, R., Solano, R., . . . Mohr, M. (2010). Application of four different football match analysis systems: a comparative study. J Sports Sci, 28(2), 171-182. doi:10.1080/0264041090342852510.1080/0264041090342852520391091
  55. Roberts-Thomson, C. L., Lokshin, A. M., & Kuzkin, V. A. (2014). Jump detection using fuzzy logic. Paper presented at the 2014 IEEE Symposium on Computational Intelligence for Engineering Solutions (CIES).10.1109/CIES.2014.7011841
  56. Sadi, F., & Klukas, R. (2012). New jump trajectory determination method using low-cost MEMS sensor fusion and augmented observations for GPS/INS integration. GPS Solutions, 17(2), 139-152. doi:10.1007/s10291-012-0267-710.1007/s10291-012-0267-7
  57. Schmidt, M., Rheinländer, C. C., Wille, S., Wehn, N., & Jaitner, T. (2016). IMU-based determination of fatigue during long sprint. Paper presented at the Proceedings of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing Adjunct - UbiComp ‘16.10.1145/2968219.2968575
  58. Schuldhaus, D., Zwick, C., Korger, H., Dorschky, E., Kirk, R., & Eskofier, B. M. (2015). Inertial Sensor-Based Approach for Shot/Pass Classification During a Soccer Match. Paper presented at the ACM KDD Workshop on Large Scale Sports Analytics.
  59. Serpiello, F. R., Hopkins, W. G., Barnes, S., Tavrou, J., Duthie, G. M., Aughey, R. J., & Ball, K. (2018). Validity of an ultra-wideband local positioning system to measure locomotion in indoor sports. J Sports Sci, 36(15), 1727-1733. doi:10.1080/02640414.2017.141186710.1080/02640414.2017.141186729192842
  60. Shoaib, M., Bosch, S., Incel, O. D., Scholten, H., & Havinga, P. J. (2014). Fusion of smartphone motion sensors for physical activity recognition. Sensors (Basel), 14(6), 10146-10176. doi:10.3390/s14061014610.3390/s140610146411835124919015
  61. Ustev, Y., Incel, O., & Ersoy, C. (2013). User, Device and Orientation Independent Human Activity Recognition on Mobile Phones: Challenges and a Proposal. UbiComp 13.10.1145/2494091.2496039
  62. Valenti, R. G., Dryanovski, I., & Xiao, J. (2015). Keeping a Good Attitude: A Quaternion-Based Orientation Filter for IMUs and MARGs. Sensors (Basel), 15(8), 19302-19330. doi:10.3390/s15081930210.3390/s150819302457037226258778
  63. Walker, E. J., McAinch, A. J., Sweeting, A., & Aughey, R. J. (2016). Inertial sensors to estimate the energy expenditure of team-sport athletes. J Sci Med Sport, 19(2), 177-181. doi:10.1016/j.jsams.2015.01.01310.1016/j.jsams.2015.01.01325804422
  64. Wang, J., Chen, R., Sun, X., She, M. F. H., & Wu, Y. (2011). Recognizing Human Daily Activities From Accelerometer Signal. Procedia Engineering, 15, 1780-1786. doi:10.1016/j.proeng.2011.08.33110.1016/j.proeng.2011.08.331
  65. Wundersitz, D. W., Josman, C., Gupta, R., Netto, K. J., Gastin, P. B., & Robertson, S. (2015). Classification of team sport activities using a single wearable tracking device. J Biomech, 48(15), 3975-3981. doi:10.1016/j.jbiomech.2015.09.01510.1016/j.jbiomech.2015.09.01526472301
  66. Xing, J., Ai, H., Liu, L., & Lao, S. (2011). Multiple player tracking in sports video: a dual-mode two-way bayesian inference approach with progressive observation modeling. IEEE Trans Image Process, 20(6), 1652-1667. doi:10.1109/TIP.2010.210204510.1109/TIP.2010.210204521189238
  67. Zhang, K., Werner, P., Sun, M., Pi-Sunyer, X., & Boozer, N. (2002). Measurmnt of human daily physical activity. Obesity Research, 11(1), 33-40.10.1038/oby.2003.712529483
Language: English
Page range: 1 - 20
Published on: Dec 31, 2020
Published by: International Association of Computer Science in Sport
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2020 P.D. Smith, A. Bedford, published by International Association of Computer Science in Sport
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.