Have a personal or library account? Click to login
Feature Selection to Win the Point of ATP Tennis Players Using Rally Information Cover

Feature Selection to Win the Point of ATP Tennis Players Using Rally Information

By: M. Makino,  T. Odaka,  J. Kuroiwa,  I. Suwa and  H. Shirai  
Open Access
|Jun 2020

References

  1. Clarke, S. R., & Dyte, D. (2000). Using official ratings to simulate major tennis tournaments. International transactions in operational research, 7(6), 585-594.10.1111/j.1475-3995.2000.tb00218.x
  2. Clowes, S., Cohen, G. L., & Tomljanovic, L. (2002). Dynamic evaluation of conditional probabilities of winning a tennis match. In Sixth Australian Conference on Mathematics and Computers in Sport. UTS.
  3. de Araujo Fernandes, M. (2017). Using Soft Computing Techniques for Prediction of Winners in Tennis Matches. Machine Learning Research, 2(3), 86-98.
  4. Klaassen, F. J., & Magnus, J. R. (2003). Forecasting the winner of a tennis match. European Journal of Operational Research, 148(2), 257-267.10.1016/S0377-2217(02)00682-3
  5. Knottenbelt, W. J., Spanias, D., & Madurska, A. M. (2012). A common-opponent stochastic model for predicting the outcome of professional tennis matches. Computers & Mathematics with Applications, 64(12), 3820-3827.10.1016/j.camwa.2012.03.005
  6. Ma, S. M., Liu, C. C., Tan, Y., & Ma, S. C. (2013). Winning matches in Grand Slam men’s singles: An analysis of player performance-related variables from 1991 to 2008. Journal of sports sciences, 31(11), 1147-1155.10.1080/02640414.2013.77547223458278
  7. McHale, I., & Morton, A. (2011). A Bradley-Terry type model for forecasting tennis match results. International Journal of Forecasting, 27(2), 619-630.10.1016/j.ijforecast.2010.04.004
  8. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., ... Vanderplas, J. (2011). Scikit-learn: Machine learning in Python. Journal of machine learning research, 12(Oct), 2825-2830.
  9. Sipko, M., & Knottenbelt, W. (2015). Machine learning for the prediction of professional tennis matches. MEng computing-final year project, Imperial College London.
  10. Wei, X., Lucey, P., Morgan, S., Reid, M., & Sridharan, S. (2016). The thin edge of the wedge:Accurately predicting shot outcomes in tennis using style and context priors. In Proceedings of the 10th Annu MIT Sloan Sport Anal Conf, Boston, MA, USA (pp.1-11).
Language: English
Page range: 37 - 50
Published on: Jun 29, 2020
Published by: International Association of Computer Science in Sport
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2020 M. Makino, T. Odaka, J. Kuroiwa, I. Suwa, H. Shirai, published by International Association of Computer Science in Sport
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.