Have a personal or library account? Click to login
Performance of machine learning models in application to beach volleyball data. Cover

Performance of machine learning models in application to beach volleyball data.

Open Access
|Jun 2020

References

  1. Arndt, C., & Brefeld, U. (2016), Predicting the future performance of soccer players. Statistical Analysis and Data Mining: The ASA Data Science Journal. 9. 373-382.10.1002/sam.11321
  2. Bialkowski, A., Lucey, P., Carr, P., Yue, Y., Sridharan, S., & Matthews, I. (2015). Large-Scale Analysis of Soccer Matches Using Spatiotemporal Tracking Data. In Proceedings - IEEE International Conference on Data Mining, ICDM.
  3. Bianchi, F., Facchinetti, T., & Zuccolotto, P. (2017). Role revolution: Towards a new meaning of positions in basketball. Electronic Journal of Applied Statistical Analysis, 10(3), 712–734.
  4. Bunker, R. P., & Thabtah, F. (2019). A machine learning framework for sport result prediction. Applied Computing and Informatics, 15(1), 27–33.10.1016/j.aci.2017.09.005
  5. Chen, T., & Guestrin, C. (2016). {XGBoost}: A Scalable Tree Boosting System. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (pp. 785–794). New York, NY, USA: ACM.
  6. Cho, K., Van Merriënboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H., & Bengio, Y. (2014). Learning phrase representations using RNN encoder-decoder for statistical machine translation. arXiv preprint arXiv:1406.1078.
  7. Chung, J., Gulcehre, C., Cho, K., & Bengio, Y. (2014). Empirical evaluation of gated recurrent neural networks on sequence modeling. arXiv preprint arXiv:1412.3555.
  8. Claudino, J. G., Capanema, D. de O., de Souza, T. V., Serrão, J. C., Machado Pereira, A. C., & Nassis, G. P. (2019). Current Approaches to the Use of Artificial Intelligence for Injury Risk Assessment and Performance Prediction in Team Sports: A Systematic Review. Sports Medicine - Open, 5(1).10.1186/s40798-019-0202-3660992831270636
  9. Dick, U., & Brefeld, U. (2019). Learning to Rate Player Positioning in Soccer. Big Data, 7(1), 71–82.10.1089/big.2018.005430672712
  10. Esman, G. (2017, April 18). Splunk and Tensorflow for Security: Catching the Fraudster with Behavior Biometrics. Retrieved from https://www.splunk.com/blog/2017/04/18/deep-learning-with-splunk-and-tensorflow-for-security-catching-the-fraudster-in-neural-networks-with-behavioral-biometrics.html
  11. Hassan, A., Schrapf, N., Ramadan, W., & Tilp, M. (2017a). Evaluation of tactical training in team handball by means of artificial neural networks. Journal of Sports Sciences, 35(7).10.1080/02640414.2016.118380427211106
  12. Hassan, A., Schrapf, N., & Tilp, M. (2017b). The prediction of action positions in team handball by non-linear hybrid neural networks. International Journal of Performance Analysis in Sport, 17(3), 293–302.10.1080/24748668.2017.1336688
  13. Howard, J., et. al. (2018). fast.ai. GitHub. Retrieved from https://github.com/fastai/fastai
  14. Ioffe, S., & Szegedy, C. (2015). Batch normalization: Accelerating deep network training by reducing internal covariate shift. arXiv preprint arXiv:1502.03167.
  15. Kautz, T., Groh, B. H., Hannink, J., Jensen, U., Strubberg, H., & Eskofier, B. M. (2017). Activity recognition in beach volleyball using a Deep Convolutional Neural Network. Data Mining and Knowledge Discovery, 31(6), 1678–1705.10.1007/s10618-017-0495-0
  16. Kempe, M., Grunz, A., & Memmert, D. (2015). Detecting tactical patterns in basketball: Comparison of merge self-organising maps and dynamic controlled neural networks. European Journal of Sport Science, 15(4), 249–255.10.1080/17461391.2014.93388224993662
  17. Kingma, D. P., & Ba, J. (2014). Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980.
  18. Kocmi, T., & Bojar, O. (2017). An exploration of word embedding initialization in deep-learning tasks. arXiv preprint arXiv:1711.09160.
  19. Lames, M., & McGarry, T. (2007). On the search for reliable performance indicators in game sports. International Journal of Performance Analysis in Sport, 7(1), 62-79.10.1080/24748668.2007.11868388
  20. Lapham A.C., & Bartlett, R.M. (1995) The use of artificial intelligence in the analysis of sports performance: A review of applications in human gait analysis and future directions for sports biomechanics, Journal of Sports Sciences, 13(3), 229-237.10.1080/026404195087322327563290
  21. Leicht, A. S., Gómez, M. A., & Woods, C. T. (2017). Explaining match outcome during the men’s basketball tournament at the olympic games. Journal of Sports Science and Medicine, 16(4), 468–473.
  22. Link, D. (2014). A toolset for beach volleyball game analysis based on object tracking. Int. J. Comp. Sci. Sport 13, 24–35
  23. Link, D., & Hoernig, M. (2017). Individual ball possession in soccer. PLoS ONE. 12(7): e0179953. https://doi.org/10.1371/journal.pone.017995310.1371/journal.pone.0179953550322528692649
  24. Link, D. (2018). Data Analytics in Professional Soccer. Springer Fachmedien Wiesbaden.10.1007/978-3-658-21177-6
  25. López-Valenciano A., Ayala F., Puerta J.M., De Ste Croix M., Vera-Garcia F.J., Hernández-Sánchez S., Ruiz-Pérez I., & Myer G.D. (2018). A preventive model for muscle injuries: a novel approach based on learning algorithms. Med Sci Sports Exerc. 50(5). 915–92710.1249/MSS.0000000000001535658236329283933
  26. Maas, A. L., Hannun, A. Y., & Ng, A. Y. (2013). Rectifier nonlinearities improve neural network acoustic models. In Proc. Icml. 30(1), 3-9.
  27. Melis, D. A., & Jaakkola, T. (2018). Towards robust interpretability with self-explaining neural networks. In Advances in Neural Information Processing Systems (pp. 7775-7784).
  28. Net gains - the evolution of beach volleyball. (2016, July 21). Retrieved from https://www.olympic.org/news/net-gains-the-evolution-of-beach-volleyball
  29. Parmar, N., James, N., Hughes, M., Jones, H., & Hearne, G. (2017). Team performance indicators that predict match outcome and points difference in professional rugby league. International Journal of Performance Analysis in Sport, 17(6), 1044–1056.10.1080/24748668.2017.1419409
  30. Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., ... & Lerer, A. (2017). Automatic differentiation in PyTorch. In Long Beach, California, USA: Autodiff Workshop.
  31. Perl, J., & Memmert, D. (2011). Net-Based Game Analysis by Means of the Software Tool SOCCER. International Journal of Computer Science in Sport, 10(2), 77–84.
  32. Peterson, K. D. (2018) Recurrent Neural Network to Forecast Sprint Performance, Applied Artificial Intelligence, 32(7-8), 692-70610.1080/08839514.2018.1505214
  33. Rosenblatt, F. (1961). Principles of neurodynamics. perceptrons and the theory of brain mechanisms (No. VG-1196-G-8). Cornell Aeronautical Lab Inc Buffalo NY.
  34. Russell, S., & Norvig, P. (2010). Artificial Intelligence: A Modern Approach - Third Edition. Pearson.
  35. Schrapf, N., Alsaied, S., & Tilp, M. (2017). Tactical interaction of offensive and defensive teams in team handball analysed by artificial neural networks. Mathematical and Computer Modelling of Dynamical Systems, 23(4), 363–371.10.1080/13873954.2017.1336733
  36. Smith, L. N. (2017). Cyclical learning rates for training neural networks. In 2017 IEEE Winter Conference on Applications of Computer Vision (WACV) (pp. 464-472). IEEE.10.1109/WACV.2017.58
  37. Smith, L. N. (2018). A disciplined approach to neural network hyper-parameters: Part 1--learning rate, batch size, momentum, and weight decay. arXiv preprint arXiv:1803.09820.
  38. Tümer, A. E., & Koçer, S. (2017). Prediction of team league’s rankings in volleyball by artificial neural network method. International Journal of Performance Analysis in Sport, 17(3), 202–211.10.1080/24748668.2017.1331570
  39. Vales-Alonso, J., Chaves-Dieguez, D., Lopez-Matencio, P., Alcaraz, J. J., Parrado-Garcia, F. J., & Gonzalez-Castano, F. J. (2015). SAETA: A Smart Coaching Assistant for Professional Volleyball Training. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 45(8), 1138–1150.
  40. Van Haaren, J., Ben Shitrit, H., Davis, J., & Fua, P. (2016). Analyzing volleyball match data from the 2014 world championships using machine learning techniques. In Proceedings of the 22Nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’16, (pp. 627-634)., New York, NY, USA. ACM.10.1145/2939672.2939725
  41. Wang, K., & Zemel, R. (2016). Classifying NBA Offensive Plays Using Neural Networks. MIT Sloan Sports Analytics Conference, 1–9.
  42. Wang, Y., Zhao, Y., Chan, R. H. M., & Li, W. J. (2018). Volleyball Skill Assessment Using a Single Wearable Micro Inertial Measurement Unit at Wrist. IEEE Access, 6, 13758–13765.10.1109/ACCESS.2018.2792220
  43. Weissbock, J., & Inkpen, D. (2014). Combining textual pre-game reports and statistical data for predicting success in the national hockey league. In Canadian Conference on Artificial Intelligence (pp. 251-262). Springer, Cham.10.1007/978-3-319-06483-3_22
  44. Zetou, E., Moustakidis, A., Tsigilis, N., & Komninakidou, A. (2007). Does Effectiveness of Skill in Complex I Predict Win in Men’s Olympic Volleyball Games? Journal of Quantitative Analysis in Sports, 3(4).10.2202/1559-0410.1076
Language: English
Page range: 24 - 36
Published on: Jun 29, 2020
Published by: International Association of Computer Science in Sport
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2020 Sebastian Wenninger, Daniel Link, Martin Lames, published by International Association of Computer Science in Sport
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.