Bhargava, N., Sharma, G., Bhargava, R., & Mathuria, M. (2013). Decision tree analysis on j48 algorithm for data mining. Proceedings of International Journal of Advanced Research in Computer Science and Software Engineering, 3(6).
Box, G., & Cox, D. (1964). An Analysis of Transformations. Journal Of The Royal Statistical Society Series B, 26(2), 211-252.10.1111/j.2517-6161.1964.tb00553.x
Buursma, D. (2011). Predicting Sports Events From Past Results Towards Effective Betting On Football Matches. In 14Th Twente Student Conference On IT, Twente, Holland (Vol. 21).
Constantinou, A. C. (2018). Dolores: A model that predicts football match outcomes from all over the world. Machine Learning, 108(1), 49-75.10.1007/s10994-018-5703-7
Constantinou, A., Fenton, N., & Neil, M. (2012). pi-football: A Bayesian network model for forecasting Association Football match outcomes. Knowledge-Based Systems, 36, 322-339. doi: 10.1016/j.knosys.2012.07.008.10.1016/j.knosys.2012.07.008
Crowder, M., Dixon, M., Ledford, A., & Robinson, M. (2002). Dynamic modelling and prediction of English Football League matches for betting. Journal Of The Royal Statistical Society: Series D (The Statistician), 51(2), 157-168. doi: 10.1111/1467-9884.00308.10.1111/1467-9884.00308
Dobravec, S. (2015, May). Predicting sports results using latent features: A case study. In 2015 38th International Convention On Information And Communication Technology, Electronics And Microelectronics (MIPRO) (pp.1267-1272). IEEE. doi: 10.1109/mipro.2015.7160470.10.1109/mipro.2015.7160470
Domingos, P. (1999). MetaCost: a general method for making classifiers cost-sensitive. Proceedings of the 5th ACM SIGKDD International Conference On Knowledge Discovery And Data Mining (KDD'99), (pp.155-164). doi:10.1145/312129.312220.10.1145/312129.312220
Elkan, C. (2001). The Foundations Of Cost-Sensitive Learning. Proccedings of the 17th international joint conference on Artificial Intelligence (pp. 973-978). Seattle, WA, USA.
Eryarsoy, E., & Delen, D. (2019, January). Predicting the Outcome of a Football Game: A Comparative Analysis of Single and Ensemble Analytics Methods. Proceedings of the 52nd Hawaii International Conference on System Sciences. doi: 10.24251/HICSS.2019.13610.24251/HICSS.2019.136
Franck, E., Verbeek, E., & Nüesch, S. (2010). Prediction accuracy of different market structures—bookmakers versus a betting exchange. International Journal of Forecasting, 26(3), 448-459.10.1016/j.ijforecast.2010.01.004
Frank, E., Hall, M., Holmes, G., Kirkby, R., Pfahringer, B., Witten, I., & Trigg, L. (2017). Weka. Data Mining And Knowledge Discovery Handbook, (pp. 1305-1314). doi:10.1007/0-387-25465-x_62.10.1007/0-387-25465-x_62
Goddard, J., & Asimakopoulos, I. (2004). Forecasting football results and the efficiency of fixed-odds betting. Journal Of Forecasting, 23(1), 51-66. doi: 10.1002/for.877.10.1002/.877
Godin, F., Zuallaert, J., Vandersmissen, B., De Neve, W., & Van de Walle, R. (2014). Beating the bookmakers: leveraging statistics and Twitter microposts for predicting soccer results. Workshop on Large-Scale Sports Analytics, Proceedings. Presented at the Workshop on Large-Scale Sports Analytics (KDD 2014).
Haaren, J., & Davis, J. (2015). Predicting The Final League Tables Of Domestic Football Leagues. Proceedings of the 5th International Conference On Mathematics In Sport, (pp. 202-207).
Haghighat, M., Rastegari, H., & Nourafza, N. (2013). A Review Of Data Mining Techniques For Result Prediction In Sports. Advances In Computer Science: An International Journal, 2(5), 7-12.
Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., & Witten, I. (2009). The WEKA data mining software: an update. ACM SIGKDD Explorations Newsletter, 11(1), 10-18. doi: 10.1145/1656274.1656278.10.1145/1656274.1656278
Hand, D., & Yu, K. (2001). Idiot's Bayes: Not So Stupid after All?. International Statistical Review / Revue Internationale De Statistique, 69(3), 385. doi: 10.2307/1403452.10.2307/1403452
Karlis, D., & Ntzoufras, I. (2003). Analysis of sports data by using bivariate Poisson models. Journal Of The Royal Statistical Society: Series D (The Statistician), 52(3), 381-393. doi: 10.1111/1467-9884.00366.10.1111/1467-9884.00366
Karlis, D., & Ntzoufras, I. (2008). Bayesian modelling of football outcomes: using the Skellam's distribution for the goal difference. IMA Journal Of Management Mathematics, 20(2), 133-145. doi: 10.1093/imaman/dpn026.10.1093/imaman/dpn026
Koopman, S., & Lit, R. (2013). A dynamic bivariate Poisson model for analysing and forecasting match results in the English Premier League. Journal Of The Royal Statistical Society: Series A (Statistics In Society), 178(1), 167-186. doi: 10.1111/rssa.12042.10.1111/rssa.12042
Kyriakides, G., Talattinis, K., & George, S. (2014). Rating Systems Vs Machine Learning on the context of sports. Proceedings Of The 18th Panhellenic Conference On Informatics - PCI'14. doi: 10.1145/2645791.2645846.10.1145/2645791.2645846
Kyriakides, G., Talattinis, K., & Stephanides, G. (2017). A Hybrid Approach to Predicting Sports Results and an AccuRATE Rating System. International Journal Of Applied And Computational Mathematics, 3(1), 239-254. doi: 10.1007/s40819-015-0103-1.10.1007/s40819-015-0103-1
Kyriakides, G., Talattinis, K., & Stephanides, G. (2015). Raw Rating Systems and Strategy Approaches to Sports Betting. In 5th International Conference on Mathematics in Sport (pp. 97-102). Loughborough.
McCarthy, K., Zabar, B., & Weiss, G. (2005). Does cost-sensitive learning beat sampling for classifying rare classes?. Proceedings Of The 1st International Workshop On Utility-Based Data Mining - UBDM'05 (pp.69-77). doi:10.1145/1089827.1089836.10.1145/1089827.1089836
Schumaker, R. P., Jarmoszko, A. T., & Labedz Jr, C. S. (2016). Predicting wins and spread in the Premier League using a sentiment analysis of twitter. Decision Support Systems, 88(C), 76-84. doi: 10.1016/j.dss.2016.05.01010.1016/j.dss.2016.05.010
Sheng, V., & Ling, C. (2009). Cost-sensitive learning. In J. Wang, Encyclopedia of Data Warehousing and Mining (2nd ed.), (pp. 339-345).10.4018/978-1-60566-010-3.ch054
Spann, M., & Skiera, B. (2009). Sports forecasting: a comparison of the forecast accuracy of prediction markets, betting odds and tipsters. Journal Of Forecasting, 28(1), 55-72. doi:10.1002/for.1091.10.1002/.1091
Suykens, J. A., & Vandewalle, J. (1999). Least squares support vector machine classifiers. Neural processing letters, 9(3), 293-300.10.1023/A:1018628609742
Ting, K. (1998). Inducing cost-sensitive trees via instance weighting. Principles Of Data Mining And Knowledge Discovery, (pp. 139-147). doi:0.1007/bfb0094814.10.1007/BFb0094814