Have a personal or library account? Click to login

Modelling Match Outcome in Australian Football: Improved accuracy with large databases

By:
Open Access
|Aug 2019

References

  1. Abeel, T., Helleputte, T., Van de Peer, Y., Dupont, P., & Saeys, Y. J. B. (2009). Robust biomarker identification for cancer diagnosis with ensemble feature selection methods. 26(3), pp. 392-398.10.1093/bioinformatics/btp630
  2. Berthelot, G., Tafflet, M., El Helou, N., Len, S., Escolano, S., Guillaume, M., ... Desgorces, F. D. (2010). Athlete atypicity on the edge of human achievement: performances stagnate after the last peak, in 1988. PloS One, 5(1), p e8800.10.1371/journal.pone.0008800280835520098706
  3. Castellano, J., Casamichana, D., & Lago, C. (2012). The use of match statistics that discriminate between successful and unsuccessful soccer teams. Journal of human kinetics, 31, pp. 137-147.10.2478/v10078-012-0015-7358866223487020
  4. Champion Data. (2017). AFL Prospectus: The Essential Number-Cuncher For Season 2017 (12th ed.): Champion Data Pty Ltd.
  5. Fernandez-Navarro, J., Fradua, L., Zubillaga, A., Ford, P. R., & McRobert, A. P. (2016). Attacking and defensive styles of play in soccer: analysis of Spanish and English elite teams. Journal of Sports Sciences, 34(24), pp. 2195-2204.10.1080/02640414.2016.116930927052355
  6. Gómez, M. A., Gómez-Lopez, M., Lago, C., & Sampaio, J. (2012). Effects of game location and final outcome on game-related statistics in each zone of the pitch in professional football. European Journal of Sport Science, 12(5), pp. 393-398.10.1080/17461391.2011.566373
  7. Gómez, M. A., Lorenzo, A., Barakat, R., Ortega, E., & José M, P. (2008). Differences in game-related statistics of basketball performance by game location for men's winning and losing teams. Perceptual and Motor Skills, 106(1), pp. 43-50.10.2466/pms.106.1.43-5018459354
  8. Hall, M., Witten, I., & Frank, E. (2011). Data mining: Practical machine learning tools and techniques. Kaufmann, Burlington
  9. Hastie, T., Tibshirani, R., & Friedman, J. (2013). The Elements of Statistical Learning: Data Mining, Inference, and Prediction: Springer New York.
  10. Higham, D. G., Hopkins, W. G., Pyne, D. B., & Anson, J. M. (2014). Performance indicators related to points scoring and winning in international rugby sevens. Journal of Sports Science & Medicine, 13(2), p 358.
  11. Jacklin, P. B. (2005). Temporal changes in home advantage in English football since the Second World War: What explains improved away performance? Journal of Sports Sciences, 23(7), pp. 669-679. Retrieved from http://ezproxy.deakin.edu.au/login?url=http://search.ebscohost.com/login.aspx?direct=true&db=s3h&AN=17472456&authtype=sso&custid=deakin&site=eds-live&scope=site10.1080/0264041040002194816195016
  12. Jones, N. M. P., Mellalieu, S. D., & James, N. (2004). Team performance indicators as a function of winning and losing in rugby union. International Journal of Performance Analysis in Sport, 4(1), pp. 61-71. Retrieved from http://www.ingentaconnect.com/content/uwic/ujpa/2004/00000004/00000001/art0000710.1080/24748668.2004.11868292
  13. Lago-Peñas, C., Lago-Ballesteros, J., & Rey, E. (2011). Differences in performance indicators between winning and losing teams in the UEFA Champions League. Journal of human kinetics, 27, pp. 135-146.10.2478/v10078-011-0011-3
  14. Levendis, J. D. (2018). Stationarity and Invertibility Time Series Econometrics: Learning Through Replication (pp. 81-99). Cham: Springer International Publishing.10.1007/978-3-319-98282-3
  15. Liu, H., Gomez, M.-Á., Lago-Peñas, C., & Sampaio, J. (2015). Match statistics related to winning in the group stage of 2014 Brazil FIFA World Cup. Journal of Sports Sciences, 33(12), pp. 1205-1213.10.1080/02640414.2015.102257825793661
  16. Luo, W., Phung, D., Tran, T., Gupta, S., Rana, S., Karmakar, C., . . . Ho, T. B. (2016). Guidelines for Developing and Reporting Machine Learning Predictive Models in Biomedical Research: A Multidisciplinary View. Journal of Medical Internet Research, 18(12)10.2196/jmir.5870523870727986644
  17. Moura, F. A., Martins, L. E. B., & Cunha, S. A. (2014). Analysis of football game-related statistics using multivariate techniques. Journal of Sports Sciences, 32(20), pp. 1881-1887.10.1080/02640414.2013.85313024742152
  18. Muggeo, V. M. (2003). Estimating regression models with unknown break-points. Statistics in Medicine, 22(19), pp. 3055-3071.10.1002/sim.154512973787
  19. Muggeo, V. M., & Muggeo, M. V. M. (2017). Package ‘segmented’. Biometrika, 58, pp. 525-534.
  20. O'Brien, R. M. (2017). Dropping highly collinear variables from a model: Why it typically is not a good idea. Social Science Quarterly, 98(1), pp. 360-375.10.1111/ssqu.12273
  21. O'Donoghue, P. (2009). Research methods for sports performance analysis: Routledge.10.4324/9780203878309
  22. O’Donoghue, P., Ball, D., Eustace, J., McFarlan, B., & Nisotaki, M. (2016). Predictive models of the 2015 Rugby World Cup: Accuracy and application. 15(1), pp. 37-58.10.1515/ijcss-2016-0003
  23. O’Shaughnessy, D. M. (2006). Possession versus position: strategic evaluation in AFL. Journal of Sports Science and Medicine, 5(4), pp. 533-540.
  24. Ofoghi, B., Zeleznikow, J., MacMahon, C., & Raab, M. (2013). Data mining in elite sports: a review and a framework. Measurement in Physical Education and Exercise Science, 17(3), pp. 171-186.10.1080/1091367X.2013.805137
  25. Robertson, S., Back, N., & Bartlett, J. D. (2016). Explaining match outcome in elite Australian Rules football using team performance indicators. Journal of Sports Sciences, 34(7), pp. 637-644.10.1080/02640414.2015.106602626176890
  26. Robertson, S., Gupta, R., & McIntosh, S. (2016). A method to assess the influence of individual player performance distribution on match outcome in team sports. Journal of Sports Sciences, pp. 1-8.10.1080/02640414.2016.114210626853070
  27. Stewart, M., Mitchell, H., & Stavros, C. (2007). Moneyball applied: Econometrics and the identification and recruitment of elite Australian footballers. International Journal of Sport Finance, 2(4), pp. 231-248.
  28. Taylor, W. A. (2000). Change-point analysis: a powerful new tool for detecting changes. Retrieved Date from http://www.variation.com/cpa/tech/changepoint.html.
  29. R Studio Team. (2015). RStudio: integrated development for R. RStudio, Inc., Boston, MA URL http://www.rstudio.com
  30. Vaz, L., Van Rooyen, M., & Sampaio, J. (2010). Rugby game-related statistics that discriminate between winning and losing teams in IRB and Super twelve close games. Journal of Sports Science & Medicine, 9(1), p 51.
  31. Woods, C. T. (2016). The use of team performance indicator characteristics to explain ladder position at the conclusion of the Australian Football League home and away season. International Journal of Performance Analysis in Sport, 16(3), pp. 837-847.10.1080/24748668.2016.11868932
  32. Woods, C. T., Robertson, S., & Collier, N. F. (2017). Evolution of game-play in the Australia n Football League from 2001 to 2015. Journal of Sports Sciences, 35(19), pp. 1879-1887.10.1080/02640414.2016.124087927732158
  33. Yang, P. Z., Bing Yang, Jean Zomaya, Albert (2013). Stability of feature selection algorithms and ensemble feature selection methods in bioinformatics. 23, p 333.10.1002/9781118617151.ch14
Language: English
Page range: 80 - 92
Published on: Aug 21, 2019
Published by: International Association of Computer Science in Sport
In partnership with: Paradigm Publishing Services
Publication frequency: 2 times per year

© 2019 C. Young, W. Luo, P. Gastin, J. Tran, D. Dwyer, published by International Association of Computer Science in Sport
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.