Have a personal or library account? Click to login

Discovering patterns of play in netball with network motifs and association rules

Open Access
|Aug 2019

References

  1. Agrawal, R., & Srikant, R. (1994). Fast algorithms for mining association rules. Paper presented at the Proc. 20th int. conf. very large data bases, VLDB.
  2. Beckkers, J., & Dabadghao, S. (2017). Flow Motifs in Soccer: What can passing behaviour tell us? Paper presented at the In Proceedings of the 11th MIT sloan sports analytics conference, Boston, Massachusetts.
  3. Bruce, L., Brooks, E. R., & Woods, C. T. (2018). Team and seasonal performance indicator evolution in the ANZ Championship netball league. Journal of sports sciences, 36:24, 2771-7777. doi:10.1080/02640414.2018.147309910.1080/02640414.2018.147309929745299
  4. Bruce, L., Farrow, D., Raynor, A., & May, E. (2009). Notation analysis of skill expertise differences in netball. International Journal of Performance Analysis in Sport, 9(2), 245-254.10.1080/24748668.2009.11868481
  5. Clemente, F. M., Martins, F. M. L., Couceiro, M. S., Mendes, R. S., & Figueiredo, A. J. (2014). A network approach to characterize the teammates’ interactions on football: A single match analysis. Cuadernos de Psicología del Deporte, 14(3), 141-148.10.4321/S1578-84232014000300015
  6. Croft, H., Willcox, B., & Lamb, P. (2017). Using performance data to identify styles of play in netball: an alternative to performance indicators. International Journal of Performance Analysis in Sport, 17(6), 1034-1043.10.1080/24748668.2017.1419408
  7. Davidson, A., & Trewartha, G. (2008). Understanding the physiological demands of netball: A time-motion investigation. International Journal of Performance Analysis in Sport, 8(3), 1-17.10.1080/24748668.2008.11868443
  8. Dudek, D. (2010). Measures for Comparing Association Rule Sets. Paper presented at the International Conference on Artificial Intelligence and Soft Computing, Berlin, Heidelberg.10.1007/978-3-642-13208-7_40
  9. Fewell, J. H., Armbruster, D., Ingraham, J., Petersen, A., & Waters, J. S. (2012). Basketball teams as strategic networks. PloS one, 7(11), e47445.10.1371/journal.pone.0047445349098023139744
  10. Fonseca, S., Milho, J., Travassos, B., & Araújo, D. (2012). Spatial dynamics of team sports exposed by Voronoi diagrams. Human Movement Science, 31(6), 1652-1659.10.1016/j.humov.2012.04.00622770973
  11. Gentleman, R., & Carey, V. (2008). Unsupervised machine learning Bioconductor Case Studies (pp. 137-157): Springer.10.1007/978-0-387-77240-0_10
  12. Gudmundsson, J., & Wolle, T. (2014). Football analysis using spatio-temporal tools. Computers, Environment and Urban Systems, 47, 16-27.10.1016/j.compenvurbsys.2013.09.004
  13. Gyarmati, L., & Anguera, X. (2015). Automatic Extraction of the Passing Strategies of Soccer Teams. arXiv preprint arXiv:1508.02171.
  14. Gyarmati, L., Kwak, H., & Rodriguez, P. (2014). Searching for a unique style in soccer. Paper presented at the 2014 KDD Workshop on Large-Scale Sports Analytics, New York City.
  15. Hughes, M. D., & Bartlett, R. M. (2002). The use of performance indicators in performance analysis. Journal of sports sciences, 20(10), 739-754.10.1080/02640410232067560212363292
  16. International Federation of Netball. (2018). Rules of Netball. Retrieved from http://netball.org/wp-content/uploads/2017/12/INF-Rules-of-Netball-2018-Edition-text.pdf
  17. López Peña, J., & Sánchez Navarro, R. (2015). Who can replace Xavi? A passing motif analysis of football players. arXiv preprint arXiv:1506.07768.
  18. Lusher, D., Robins, G., & Kremer, P. (2010). The Application of Social Network Analysis to Team Sports. Measurement in Physical Education and Exercise Science, 14(4), 211-224. doi:10.1080/1091367x.2010.49555910.1080/1091367x.2010.495559
  19. Milo, R., Shen-Orr, S., Itzkovitz, S., Kashtan, N., Chklovskii, D., & Alon, U. (2002). Network motifs: simple building blocks of complex networks. Science, 298(5594), 824-827. doi:10.1126/science.298.5594.82410.1126/.298.5594.824
  20. Morgan, S. (2011). Detecting Spatial Trends in Hockey Using Frequent Item Sets. Paper presented at the Proceedings of the 8th International Symposium on Computer Science in Sport.
  21. Passos, P., Davids, K., Araújo, D., Paz, N., Minguéns, J., & Mendes, J. (2011). Networks as a novel tool for studying team ball sports as complex social systems. Journal of Science and Medicine in Sport, 14(2), 170-176.10.1016/j.jsams.2010.10.45921145787
  22. Rocha, L. E., & Blondel, V. D. (2013). Flow motifs reveal limitations of the static framework to represent human interactions. Physical Review E, 87(4).10.1103/PhysRevE.87.04281423679480
  23. Spencer, B., Morgan, S., Zeleznikow, J., & Robertson, S. (2016). Clustering team profiles in the Australian Football League using performance indicators. Paper presented at the Proceedings of the 13th Australasian Conference on Mathematics and Computers in Sport, Melbourne, 11-13 July, 2016.
  24. Steele, J. R., & Chad, K. E. (1991). An analysis of the movement patterns of netball players during match play: implications for designing training programs. Journal of human movement studies, 20, 249-278.
  25. Stöckl, M., & Morgan, S. (2013). Visualization and analysis of spatial characteristics of attacks in field hockey. International Journal of Performance Analysis in Sport, 13(1), 160-178.10.1080/24748668.2013.11868639
  26. Sweeting, A. (2017). Discovering the movement sequences of elite and junior elite netball athletes. (Doctorate of Philosophy), Victoria University.
  27. Sweeting, A., Morgan, S., Cormack, S., & Aughey, R. (2014). A movement sequencing analysis of team-sport athlete match activity profile. Paper presented at the Proceedings of the 10th Australasian Conference on Mathematics and Computers in Sport, Darwin, Australia.
Language: English
Page range: 64 - 79
Published on: Aug 21, 2019
Published by: International Association of Computer Science in Sport
In partnership with: Paradigm Publishing Services
Publication frequency: 2 times per year

© 2019 P. Browne, S. Morgan, J. Bahnisch, S. Robertson, published by International Association of Computer Science in Sport
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.