Have a personal or library account? Click to login
Mining Automatically Estimated Poses from Video Recordings of Top Athletes Cover

Mining Automatically Estimated Poses from Video Recordings of Top Athletes

By: R. Lienhart,  M. Einfalt and  D. Zecha  
Open Access
|Dec 2018

References

  1. Andriluka, M., Pishchulin, L., Gehler, P., & Schiele, B. (2014). 2D human pose estimation: New benchmark and state of the art analysis. In IEEE Conference on Computer Vision and Pattern Recognition (cvpr), 3686–3693.10.1109/CVPR.2014.471
  2. Baysal, S., Kurt, M. C., & Duygulu, P. (2010). Recognizing human actions using key poses. In 20th International Conference on Pattern Recognition (ICPR), 1727–1730.10.1109/ICPR.2010.427
  3. Chu, X., Yang, W., Ouyang, W., Ma, C., Yuille, A. L., & Wang, X. (2017). Multicontext attention for human pose estimation. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 1831–1840.10.1109/CVPR.2017.601
  4. de Souza Vicente, C. M., Nascimento, E. R., Emery, L. E. C., Flor, C. A. G., Vieira, T., & Oliveira, L. B. (2016). High performance moves recognition and sequence segmentation based on key poses filtering. In IEEE Winter Conference on Applications of Computer Vision (WACV), 1–8.10.1109/WACV.2016.7477711
  5. Einfalt, M., Zecha, D., & Lienhart, R. (2018). Activity-conditioned continuous human pose estimation for performance analysis of athletes using the example of swimming. In IEEE Winter Conference on Applications of Computer Vision (WACV), 446–455.10.1109/WACV.2018.00055
  6. Frey, B. J., & Dueck, D. (2007). Clustering by passing messages between data points. Science, 315 (5814), 972–976.10.1126/science.1136800
  7. Gorban, A., Idrees, H., Jiang, Y.-G., Roshan Zamir, A., Laptev, I., Shah, M., & Sukthankar, R. (2015). THUMOS challenge: Action recognition with a large number of classes. http://www.thumos.info/.
  8. Heilbron, F. C., Escorcia, V., Ghanem, B., & Niebles, J. C. (2015). Activitynet: A large-scale video benchmark for human activity understanding. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 961–970.10.1109/CVPR.2015.7298698
  9. Levenshtein, V. I. (1966). Binary codes capable of correcting deletions, insertions, and reversals. In Soviet physics doklady, 10, 707–710.
  10. Li, H., Tang, J., Wu, S., Zhang, Y., & Lin, S. (2010). Automatic detection and analysis of player action in moving background sports video sequences. IEEE Transactions on Circuits and Systems for Video Technology (TCSVT), 20 (3), 351–364.10.1109/TCSVT.2009.2035833
  11. Lv, F., & Nevatia, R. (2007). Single view human action recognition using key pose matching and viterbi path searching. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 1–8.10.1109/CVPR.2007.383131
  12. Meyers, E. W. (1994). A sublinear algorithm for approximate keyword matching. Algorithmica, 12 (4-5), 345–374.10.1007/BF01185432
  13. Newell, A., Yang, K., & Deng, J. (2016). Stacked hourglass networks for human pose estimation. In B. Leibe, J. Matas, N. Sebe, & M. Welling (Eds.), European Conference on Computer Vision (ECCV) (pp. 483–499). Cham: Springer International Publishing.10.1007/978-3-319-46484-8_29
  14. Pansold, B., Zinner, J., & Gabriel, B. (1985). Zum einsatz und zur interpretation von laktatbestimmungen in der leistungsdiagnostik. Theorie und Praxis des Leistungssports, 23, 98–195.
  15. Pyne, D. B., Lee, H., & Swanwick, K. M. (2001). Monitoring the lactate threshold in world-ranked swimmers. Medicine and Science in Sports and Exercise, 33 (2), 291–297.10.1097/00005768-200102000-0001911224820
  16. Rabiner, L. R. (1989, Feb). A tutorial on hidden markov models and selected applications in speech recognition. Proceedings of the IEEE, 77 (2), 257-286. doi: 10.1109/5.1862610.1109/5.18626
  17. Ren, C., Lei, X., & Zhang, G. (2011). Motion data retrieval from very large motion databases. In International Conference on Virtual Reality and Visualization (ICVRV), 70–77.10.1109/ICVRV.2011.50
  18. Rowley, H. A., Baluja, S., & Kanade, T. (1998). Neural network-based face detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 20 (1), 23–38.10.1109/34.655647
  19. Sedmidubsky, J., Valcik, J., & Zezula, P. (2013). A key-pose similarity algorithm for motion data retrieval. In 15th International Conference on Advanced Concepts for Intelligent Vision Systems (ACIVS), 669–681.10.1007/978-3-319-02895-8_60
  20. Victor, B., He, Z., Morgan, S., & Miniutti, D. (2017). Continuous video to simple signals for swimming stroke detection with convolutional neural networks. In IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), 122–131.10.1109/CVPRW.2017.21
  21. Vögele, A., Krüger, B., & Klein, R. (2014). Efficient unsupervised temporal segmentation of human motion. In Proceedings of the ACM Siggraph/Eurographics Symposium on Computer Animation, 167–176.
  22. Wang, C., Wang, Y., & Yuille, A. L. (2013). An approach to pose-based action recognition. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 915–922.10.1109/CVPR.2013.123
  23. Wei, S.-E., Ramakrishna, V., Kanade, T., & Sheikh, Y. (2016). Convolutional pose machines. In The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 4724–4732.10.1109/CVPR.2016.511
  24. Wu, C., Ma, Y.-F., Zhan, H.-J., & Zhong, Y.-Z. (2002). Events recognition by semantic inference for sports video. In IEEE International Conference on Multimedia and Expo (ICME), 1, 805–808.
  25. Yang, W., Li, S., Ouyang, W., Li, H., & Wang, X. (2017, Oct). Learning feature pyramids for human pose estimation. In IEEE International Conference on Computer Vision (ICCV).10.1109/ICCV.2017.144
  26. Zecha, D., Eggert, C., & Lienhart, R. (2017). Pose estimation for deriving kinematic parameters of competitive swimmers. In Computer Vision Applications in Sports, part of IS&T Electronic Imaging (pp. 21–29). Society for Imaging Science and Technology.10.2352/ISSN.2470-1173.2017.16.CVAS-345
Language: English
Page range: 94 - 112
Published on: Dec 31, 2018
Published by: International Association of Computer Science in Sport
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2018 R. Lienhart, M. Einfalt, D. Zecha, published by International Association of Computer Science in Sport
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.