Have a personal or library account? Click to login
Predictive Modelling of Training Loads and Injury in Australian Football Cover

Predictive Modelling of Training Loads and Injury in Australian Football

Open Access
|Jul 2018

References

  1. Bittencourt, N., Meeuwisse, W., Mendonça, L., Nettel-Aguirre, A., Ocarino, J., & Fonseca, S. (2016). Complex systems approach for sports injuries: moving from risk factor identification to injury pattern recognition-narrative review and new concept. British Journal of Sports Medicine, 50(21), 1309-131410.1136/bjsports-2015-09585027445362
  2. Blanch, P., & Gabbett, T. J. (2016). Has the athlete trained enough to return to play safely? The acute: chronic workload ratio permits clinicians to quantify a player's risk of subsequent injury. British Journal of Sports Medicine, 50(8), 471-475.10.1136/bjsports-2015-09544526701923
  3. Bourdon, P. C., Cardinale, M., Murray, A., Gastin, P., Kellmann, M., Varley, M. C., . . . Cable, N. T. (2017). Monitoring Athlete Training Loads: Consensus Statement. Int J Sports Physiol Perform, 12(Suppl 2), S2161-S2170. doi:10.1123/IJSPP.2017-0208
  4. Boyd, L. J., Ball, K., & Aughey, R. J. (2011). The reliability of MinimaxX accelerometers for measuring physical activity in Australian football. International Journal of Sports Physiology and Performance, 6(3), 311-321.10.1123/ijspp.6.3.31121911857
  5. Breiman, L. (2001). Random forests. Machine learning, 45(1), 5-32.10.1023/A:1010933404324
  6. Buuren, S., & Groothuis-Oudshoorn, K. (2011). mice: Multivariate imputation by chained equations in R. Journal of statistical software, 45(3).10.18637/jss.v045.i03
  7. Carey, D. L., Blanch, P., Ong, K.-L., Crossley, K. M., Crow, J., & Morris, M. E. (2016). Training loads and injury risk in Australian football-differing acute: chronic workload ratios influence match injury risk. British Journal of Sports Medicine, bjsports-2016-096309. doi:10.1136/bjsports-2016-096309
  8. Chawla, N. V., Bowyer, K. W., Hall, L. O., & Kegelmeyer, W. P. (2002). SMOTE: synthetic minority over-sampling technique. Journal of artificial intelligence research, 16, 321-357.10.1613/jair.953
  9. Colby, M. J., Dawson, B., Heasman, J., Rogalski, B., & Gabbett, T. J. (2014). Accelerometer and GPS-derived running loads and injury risk in elite Australian footballers. The Journal of Strength & Conditioning Research, 28, 2244-2252.10.1519/JSC.000000000000036225054573
  10. Drew, M. K., & Finch, C. F. (2016). The Relationship Between Training Load and Injury, Illness and Soreness: A Systematic and Literature Review. Sports Medicine. doi:10.1007/s40279-015-0459-8
  11. Duhig, S., Shield, A. J., Opar, D., Gabbett, T. J., Ferguson, C., & Williams, M. (2016). Effect of high-speed running on hamstring strain injury risk. Br J Sports Med, 50(24), 1536-1540. doi:10.1136/bjsports-2015-095679
  12. Foster, C., Florhaug, J. A., Franklin, J., Gottschall, L., Hrovatin, L. A., Parker, S., . . . Dodge, C. (2001). A new approach to monitoring exercise training. The Journal of Strength & Conditioning Research, 15, 109-115.10.1519/00124278-200102000-00019
  13. Gabbett, T. J. (2010). The development and application of an injury prediction model for noncontact, soft-tissue injuries in elite collision sport athletes. The Journal of Strength & Conditioning Research, 24, 2593-2603.10.1519/JSC.0b013e3181f19da420847703
  14. Gabbett, T. J. (2015). Relationship Between Accelerometer Load, Collisions, and Repeated High-Intensity Effort Activity in Rugby League Players. J Strength Cond Res, 29(12), 3424-3431. doi:10.1519/JSC.0000000000001017
  15. Gabbett, T. J. (2016). The training-injury prevention paradox: should athletes be training smarter and harder? British Journal of Sports Medicine, 50, 273-280. doi:10.1136/bjsports-2015-095788
  16. Hägglund, M., Waldén, M., Magnusson, H., Kristenson, K., Bengtsson, H., & Ekstrand, J. (2013). Injuries affect team performance negatively in professional football: an 11- year follow-up of the UEFA Champions League injury study. British Journal of Sports Medicine, 47(12), 738-742.10.1136/bjsports-2013-09221523645832
  17. Hulin, B. T., Gabbett, T. J., Lawson, D. W., Caputi, P., & Sampson, J. A. (2015). The acute:chronic workload ratio predicts injury: high chronic workload may decrease injury risk in elite rugby league players. British Journal of Sports Medicine, bjsports- 2015-094817. doi:10.1136/bjsports-2015-094817
  18. Jolliffe, I. T. (1986). Principal Component Analysis and Factor Analysis Principal component analysis (pp. 115-128): Springer.10.1007/978-1-4757-1904-8_7
  19. Kuhn, M., & Johnson, K. (2013). Applied Predictive Modeling. New York, NY: Springer New York.10.1007/978-1-4614-6849-3
  20. Liang, K.-Y., & Zeger, S. L. (1986). Longitudinal data analysis using generalized linear models. Biometrika, 73(1), 13-22.10.1093/biomet/73.1.13
  21. Malone, S., Owen, A., Newton, M., Mendes, B., Collins, K. D., & Gabbett, T. J. (2016). The acute:chonic workload ratio in relation to injury risk in professional soccer. Journal of Science and Medicine in Sport. doi:10.1016/j.jsams.2016.10.014
  22. McCall, A., Fanchini, M., & Coutts, A. J. (2017). Prediction: The Modern-Day Sport-Science and Sports-Medicine "Quest for the Holy Grail". Int J Sports Physiol Perform, 12(5), 704-706. doi:10.1123/ijspp.2017-0137
  23. Murray, N. B., Gabbett, T. J., Townshend, A. D., & Blanch, P. (2016). Calculating acute:chronic workload ratios using exponentially weighted moving averages provides a more sensitive indicator of injury likelihood than rolling averages. British Journal of Sports Medicine, bjsports-2016-097152. doi:10.1136/bjsports-2016-097152
  24. Orchard, J. W., Seward, H., & Orchard, J. J. (2013). Results of 2 decades of injury surveillance and public release of data in the Australian Football League. The American Journal of Sports Medicine, 0363546513476270.10.1177/0363546513476270
  25. Rae, K., & Orchard, J. (2007). The Orchard sports injury classification system (OSICS) version 10. Clinical Journal of Sport Medicine, 17(3), 201-204.10.1097/JSM.0b013e318059b536
  26. Rampinini, E., Alberti, G., Fiorenza, M., Riggio, M., Sassi, R., Borges, T. O., & Coutts, A. J. (2015). Accuracy of GPS devices for measuring high-intensity running in field-based team sports. International Journal of Sports Medicine, 36(1), 49-53.10.1055/s-0034-1385866
  27. Rogalski, B., Dawson, B., Heasman, J., & Gabbett, T. J. (2013). Training and game loads and injury risk in elite Australian footballers. Journal of Science and Medicine in Sport, 16, 499-503. doi:10.1016/j.jsams.2012.12.004
  28. Ruddy, J. D., Pollard, C. W., Timmins, R. G., Williams, M. D., Shield, A. J., & Opar, D. A. (2016). Running exposure is associated with the risk of hamstring strain injury in elite Australian footballers. British Journal of Sports Medicine, bjsports-2016-096777. doi:10.1136/bjsports-2016-096777
  29. Soligard, T., Schwellnus, M., Alonso, J.-M., Bahr, R., Clarsen, B., Dijkstra, H. P., . . . Engebretsen, L. (2016). How much is too much? (Part 1) International Olympic Committee consensus statement on load in sport and risk of injury. British Journal of Sports Medicine, 50, 1030-1041. doi:10.1136/bjsports-2016-096581
  30. Thornton, H. R., Delaney, J. A., Duthie, G. M., & Dascombe, B. J. (2016). Importance of Various Training Load Measures on Injury Incidence of Professional Rugby League Athletes. International Journal of Sports Physiology and Performance, 1-17.
  31. Vapnik, V. N., & Vapnik, V. (1998). Statistical learning theory (Vol. 1): Wiley New York.
  32. Weaving, D., Jones, B., Till, K., Abt, G., & Beggs, C. (2017). The Case for Adopting a Multivariate Approach to Optimize Training Load Quantification in Team Sports. Front Physiol, 8, 1024. doi:10.3389/fphys.2017.01024
  33. Weaving, D., Marshall, P., Earle, K., Nevill, A., & Abt, G. (2014). Combining internal- and external-training-load measures in professional rugby league. Int J Sports Physiol Perform, 9(6), 905-912. doi:10.1123/ijspp.2013-0444
  34. Williams, S., Trewartha, G., Cross, M., Kemp, S., & Stokes, K. (2016a). Monitoring What Matters: A Systematic Process for Selecting Training Load Measures. International Journal of Sports Physiology and Performance, 1-20.
  35. Williams, S., West, S., Cross, M., & Stokes, K. (2016b). Better way to determine the acute:chronic workload ratio? British Journal of Sports Medicine, bjsports-2016-096589. doi:10.1136/bjsports-2016-096589
  36. Williamson, D. S., Bangdiwala, S. I., Marshall, S. W., & Waller, A. E. (1996). Repeated measures analysis of binary outcomes: applications to injury research. Accident Analysis & Prevention, 28(5), 571-579.10.1016/0001-4575(96)00023-1
  37. Windt, J., & Gabbett, T. J. (2017). How do training and competition workloads relate toinjury? The workload-injury aetiology model. Br J Sports Med, 51(5), 428-435.doi:10.1136/bjsports-2016-096040
  38. Zou, H., & Hastie, T. (2005). Regularization and variable selection via the elastic net. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 67(2), 301-320.10.1111/j.1467-9868.2005.00503.x
Language: English
Page range: 49 - 66
Published on: Jul 28, 2018
Published by: International Association of Computer Science in Sport
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2018 D. L. Carey, K. Ong, R. Whiteley, K. M. Crossley, J. Crow, M. E. Morris, published by International Association of Computer Science in Sport
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.