Have a personal or library account? Click to login
Filtering Random Valued Impulse Noise from Grayscale Images through Support Vector Machine and Markov Chain Cover

Filtering Random Valued Impulse Noise from Grayscale Images through Support Vector Machine and Markov Chain

Open Access
|Dec 2021

References

  1. [1] F. Agostinelli, M.R. Anderson, H. Lee, Adaptive multi-column deep neural networks with application to robust image denosing, Advances in Neural Information Processing Systems 26, pp. 1493–1501, Lake Tahoe, NV, USA, 2013.
  2. [2] I. Aizenberg, G. Wallace, Intelligent detection of impulse noise using multilayer neural network with multi-valued neurons, SPIE Proceedings, Vol. 8295, p. 82950S, 2012.10.1117/12.907639
  3. [3] S. Banerjee, A. Bandyopadhyay, A. Mukherjee, A. Das, and R. Bag, Random Valued Impulse Noise Removal Using Region Based Detection Approach, Engineering, Technology & Applied Science Research, Vol. 7, No. 6, pp. 2288–2292, 2017.10.48084/etasr.1609
  4. [4] A. Buades, B. Coll, J.-M. Morel, A non-local algorithm for image denosing, IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Vol. 2, pp. 60–65, San Diego, CA, USA, 2005.
  5. [5] F. Estrada, D. Fleet, A. Jepson, Stochastic image denoising, British Machine Vision Conference, p. 117, London, 2009.10.5244/C.23.117
  6. [6] A. Gellert, R. Brad, Context-Based Prediction Filtering of Impulse Noise Images, IET Image Processing, Vol. 10, Issue 6, pp. 429–437, 2016.10.1049/iet-ipr.2015.0702
  7. [7] A. Gellert, R. Brad, Studying the influence of search rule and context shape in filtering impulse noise images with Markov chains, Signal, Image and Video Processing, Springer London, Vol. 12, Issue 2, pp. 315–322, 2018.10.1007/s11760-017-1160-1
  8. [8] A. Gellert, R. Brad, Image Inpainting with Markov Chains, Signal, Image and Video Processing, Vol. 14, Issue 7, pp. 1335–1343, 2020.10.1007/s11760-020-01675-7
  9. [9] A. Gellert, A. Florea, Investigating a New Design Pattern for Efficient Implementation of Prediction Algorithms, Journal of Digital Information Management, Vol. 11, Issue 5, pp. 366–377, 2013.
  10. [10] A.B. Hamza, P. Luque-Escamilla, J. Martínez-Aroza, R. Román-Roldán, Removing noise and preserving details with relaxed median filters, Journal of Mathematical Imaging and Vision, Vol. 11, Issue 2, pp. 161–177, 1999.10.1023/A:1008395514426
  11. [11] N. Iqbal, S. Ali, I. Khan, B. M. Lee, Adaptive Edge Preserving Weighted Mean Filter for Removing Random-Valued Impulse Noise, Symmetry, Vol. 3, Issue 11, 2019.10.3390/sym11030395
  12. [12] Q. Jin, L. Bai, J. Yang, I. Grama, Q. Liu, A New Method for Removing Random-Valued Impulse Noise, Neural Information Processing. ICONIP 2014. Lecture Notes in Computer Science, Vol. 8836. Springer, Cham, 2014.10.1007/978-3-319-12643-2_2
  13. [13] C. Junqing, Z. Guizhen, X. Shaoping, Y. Haiwen, A Blind CNN Denoising Model for Random-Valued Impulse Noise, IEEE Access, Vol. 7, pp. 124647–124661, 2019.10.1109/ACCESS.2019.2938799
  14. [14] R. Kunsoth, M. Biswas, Modified decision based median filter for impulse noise removal, 2016 International Conference on Wireless Communications, Signal Processing and Networking, pp. 1316–1319, 2016.10.1109/WiSPNET.2016.7566350
  15. [15] T.C. Lin, SVM-based filter using evidence theory and neural network for image denoising, Journal of Software Engineering and Applications, Vol. 6, Issue 3B, pp. 106–110, 2013.10.4236/jsea.2013.63B023
  16. [16] A. Majumdar, R.K. Ward, Synthesis and Analysis Prior Algorithms for Joint-Sparse Recovery, IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 3421–3424, 2012.10.1109/ICASSP.2012.6288651
  17. [17] J. Matsuoka, T. Koga, N. Suetake and E. Uchino, Random-valued impulse noise removal in color images by using switching non-local vector median filter, 2015 International Symposium on Intelligent Signal Processing and Communication Systems, pp. 11–16, 2015.10.1109/ISPACS.2015.7432727
  18. [18] S.K. Mishra, G. Panda, S. Meher, Chebyshev functional link artificial neural networks for denosing of image corrupted by salt and pepper noise, International Journal of Recent Trends in Engineering, Vol. 1, No. 1, pp. 42–46, 2010.
  19. [19] M. Nadeem, A. Hussain, A. Munir, M. Habib, M.T. Naseem, Removal of random valued impulse noise from grayscale images using quadrant based spatially adaptive fuzzy filter, Signal Processing, Volume 169, p. 107403, 2020.10.1016/j.sigpro.2019.107403
  20. [20] C. Nello, J. Swawe-Taylor, An introduction to Support Vector Machines, Cambridge University Press, 2000.
  21. [21] B. Schoslkopf, A. Smola, Learning with Kernels, MIT Press, London, 2002.
  22. [22] P.L.B. Soares, J.P. Silva, Neural networks applied for impulse noise reduction from digital images, INFOCOMP J. Comput. Sci., Vol. 11, Issue 3–4, pp. 7–14, 2012.
  23. [23] K.S. Srinivasan, D. Ebenezer, A New Fast and Efficient Decision Based Algorithm for Removal of High Density Impulse Noise, IEEE Signal Processing Letters, Vol. 14, Issue 3, pp. 189–192, 2007.10.1109/LSP.2006.884018
  24. [24] K.K.V. Toh, N.A.M. Isa, Noise adaptive fuzzy switching median filter for salt-and-pepper noise reduction, IEEE Signal Processing Letters, Vol. 17, Issue 3, pp. 281–284, 2010.10.1109/LSP.2009.2038769
  25. [25] I. Türkmen, Removing random-valued impulse noise in images using neural network detector, Turkish Journal of Electrical Engineering and Computer Science, Vol. 22, Issue 3, pp. 637–649, 2014.10.3906/elk-1208-77
  26. [26] Z. Wang, D. Zhang, Progressive Switching Median Filter for the Removal of Impulse Noise from Highly Corrupted Images, IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, Vol. 46, Issue 1, pp. 78–80, 1999.10.1109/82.749102
  27. [27] G. Wang, D. Li, W. Pan, Z. Zang, Modified switching median filter for impulse noise removal, Signal Processing, Vol. 90, Issue 12, pp. 3213–3218, 2010.10.1016/j.sigpro.2010.05.026
  28. [28] A. Wong, A. Mishra, W. Zhang, P. Fieguth, D.A. Clausi, Stochastic image denoising based on Markov-chain Monte Carlo sampling, Signal Processing, Vol. 91, Issue 8, pp. 2112–2120, 2011.10.1016/j.sigpro.2011.03.021
  29. [29] Z. Zhu, X. Zhang, A random-valued impulse noise removal algorithm via just noticeable difference threshold detector and weighted variation method, International Journal of Computers and Applications, 2020.10.1080/1206212X.2020.1719309
  30. [30] https://www.csie.ntu.edu.tw/~cjlin/libsvm/
DOI: https://doi.org/10.2478/ijasitels-2021-0004 | Journal eISSN: 2559-365X | Journal ISSN: 2067-354X
Language: English
Page range: 70 - 84
Published on: Dec 30, 2021
Published by: Lucian Blaga University of Sibiu
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2021 Arpad Gellert, Remus Brad, Daniel Morariu, Mihai Neghina, published by Lucian Blaga University of Sibiu
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.