References
- [1] F. Agostinelli, M.R. Anderson, H. Lee, Adaptive multi-column deep neural networks with application to robust image denosing, Advances in Neural Information Processing Systems 26, pp. 1493–1501, Lake Tahoe, NV, USA, 2013.
- [2] I. Aizenberg, G. Wallace, Intelligent detection of impulse noise using multilayer neural network with multi-valued neurons, SPIE Proceedings, Vol. 8295, p. 82950S, 2012.10.1117/12.907639
- [3] S. Banerjee, A. Bandyopadhyay, A. Mukherjee, A. Das, and R. Bag, Random Valued Impulse Noise Removal Using Region Based Detection Approach, Engineering, Technology & Applied Science Research, Vol. 7, No. 6, pp. 2288–2292, 2017.10.48084/etasr.1609
- [4] A. Buades, B. Coll, J.-M. Morel, A non-local algorithm for image denosing, IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Vol. 2, pp. 60–65, San Diego, CA, USA, 2005.
- [5] F. Estrada, D. Fleet, A. Jepson, Stochastic image denoising, British Machine Vision Conference, p. 117, London, 2009.10.5244/C.23.117
- [6] A. Gellert, R. Brad, Context-Based Prediction Filtering of Impulse Noise Images, IET Image Processing, Vol. 10, Issue 6, pp. 429–437, 2016.10.1049/iet-ipr.2015.0702
- [7] A. Gellert, R. Brad, Studying the influence of search rule and context shape in filtering impulse noise images with Markov chains, Signal, Image and Video Processing, Springer London, Vol. 12, Issue 2, pp. 315–322, 2018.10.1007/s11760-017-1160-1
- [8] A. Gellert, R. Brad, Image Inpainting with Markov Chains, Signal, Image and Video Processing, Vol. 14, Issue 7, pp. 1335–1343, 2020.10.1007/s11760-020-01675-7
- [9] A. Gellert, A. Florea, Investigating a New Design Pattern for Efficient Implementation of Prediction Algorithms, Journal of Digital Information Management, Vol. 11, Issue 5, pp. 366–377, 2013.
- [10] A.B. Hamza, P. Luque-Escamilla, J. Martínez-Aroza, R. Román-Roldán, Removing noise and preserving details with relaxed median filters, Journal of Mathematical Imaging and Vision, Vol. 11, Issue 2, pp. 161–177, 1999.10.1023/A:1008395514426
- [11] N. Iqbal, S. Ali, I. Khan, B. M. Lee, Adaptive Edge Preserving Weighted Mean Filter for Removing Random-Valued Impulse Noise, Symmetry, Vol. 3, Issue 11, 2019.10.3390/sym11030395
- [12] Q. Jin, L. Bai, J. Yang, I. Grama, Q. Liu, A New Method for Removing Random-Valued Impulse Noise, Neural Information Processing. ICONIP 2014. Lecture Notes in Computer Science, Vol. 8836. Springer, Cham, 2014.10.1007/978-3-319-12643-2_2
- [13] C. Junqing, Z. Guizhen, X. Shaoping, Y. Haiwen, A Blind CNN Denoising Model for Random-Valued Impulse Noise, IEEE Access, Vol. 7, pp. 124647–124661, 2019.10.1109/ACCESS.2019.2938799
- [14] R. Kunsoth, M. Biswas, Modified decision based median filter for impulse noise removal, 2016 International Conference on Wireless Communications, Signal Processing and Networking, pp. 1316–1319, 2016.10.1109/WiSPNET.2016.7566350
- [15] T.C. Lin, SVM-based filter using evidence theory and neural network for image denoising, Journal of Software Engineering and Applications, Vol. 6, Issue 3B, pp. 106–110, 2013.10.4236/jsea.2013.63B023
- [16] A. Majumdar, R.K. Ward, Synthesis and Analysis Prior Algorithms for Joint-Sparse Recovery, IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 3421–3424, 2012.10.1109/ICASSP.2012.6288651
- [17] J. Matsuoka, T. Koga, N. Suetake and E. Uchino, Random-valued impulse noise removal in color images by using switching non-local vector median filter, 2015 International Symposium on Intelligent Signal Processing and Communication Systems, pp. 11–16, 2015.10.1109/ISPACS.2015.7432727
- [18] S.K. Mishra, G. Panda, S. Meher, Chebyshev functional link artificial neural networks for denosing of image corrupted by salt and pepper noise, International Journal of Recent Trends in Engineering, Vol. 1, No. 1, pp. 42–46, 2010.
- [19] M. Nadeem, A. Hussain, A. Munir, M. Habib, M.T. Naseem, Removal of random valued impulse noise from grayscale images using quadrant based spatially adaptive fuzzy filter, Signal Processing, Volume 169, p. 107403, 2020.10.1016/j.sigpro.2019.107403
- [20] C. Nello, J. Swawe-Taylor, An introduction to Support Vector Machines, Cambridge University Press, 2000.
- [21] B. Schoslkopf, A. Smola, Learning with Kernels, MIT Press, London, 2002.
- [22] P.L.B. Soares, J.P. Silva, Neural networks applied for impulse noise reduction from digital images, INFOCOMP J. Comput. Sci., Vol. 11, Issue 3–4, pp. 7–14, 2012.
- [23] K.S. Srinivasan, D. Ebenezer, A New Fast and Efficient Decision Based Algorithm for Removal of High Density Impulse Noise, IEEE Signal Processing Letters, Vol. 14, Issue 3, pp. 189–192, 2007.10.1109/LSP.2006.884018
- [24] K.K.V. Toh, N.A.M. Isa, Noise adaptive fuzzy switching median filter for salt-and-pepper noise reduction, IEEE Signal Processing Letters, Vol. 17, Issue 3, pp. 281–284, 2010.10.1109/LSP.2009.2038769
- [25] I. Türkmen, Removing random-valued impulse noise in images using neural network detector, Turkish Journal of Electrical Engineering and Computer Science, Vol. 22, Issue 3, pp. 637–649, 2014.10.3906/elk-1208-77
- [26] Z. Wang, D. Zhang, Progressive Switching Median Filter for the Removal of Impulse Noise from Highly Corrupted Images, IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, Vol. 46, Issue 1, pp. 78–80, 1999.10.1109/82.749102
- [27] G. Wang, D. Li, W. Pan, Z. Zang, Modified switching median filter for impulse noise removal, Signal Processing, Vol. 90, Issue 12, pp. 3213–3218, 2010.10.1016/j.sigpro.2010.05.026
- [28] A. Wong, A. Mishra, W. Zhang, P. Fieguth, D.A. Clausi, Stochastic image denoising based on Markov-chain Monte Carlo sampling, Signal Processing, Vol. 91, Issue 8, pp. 2112–2120, 2011.10.1016/j.sigpro.2011.03.021
- [29] Z. Zhu, X. Zhang, A random-valued impulse noise removal algorithm via just noticeable difference threshold detector and weighted variation method, International Journal of Computers and Applications, 2020.10.1080/1206212X.2020.1719309
- [30] https://www.csie.ntu.edu.tw/~cjlin/libsvm/