Have a personal or library account? Click to login
Modeling Electricity Consumption and Production in Smart Homes using LSTM Networks Cover

Modeling Electricity Consumption and Production in Smart Homes using LSTM Networks

Open Access
|Dec 2020

References

  1. [1] S. Abdulkarim, Time series prediction with simple recurrent neural networks, Bayero Journal of Pure and Applied Sciences, Vol. 9, No. 1, 2016.10.4314/bajopas.v9i1.4
  2. [2] C. Fan, F. Xiao, S. Wang, Development of prediction models for next-day building energy consumption and peak power demand using data mining techniques, Applied Energy, Vol. 127, 2014.10.1016/j.apenergy.2014.04.016
  3. [3] S. Feilmeier, Loads management based on photovoltaic and energy storage system, M.Sc. Thesis, Lucian Blaga University of Sibiu, 2015.
  4. [4] A. Gellert, A. Florea, U. Fiore, F. Palmieri, P. Zanetti, A study on forecasting electricity production and consumption in smart cities and factories, International Journal of Information Management, Elsevier, ISSN 0268-4012, Vol. 49, pp. 546-556, December 2019.10.1016/j.ijinfomgt.2019.01.006
  5. [5] A. Gellert, U. Fiore, A. Florea, R. Chis, Forecasting Electricity Consumption and Production in Smart Homes, Submitted to Pervasive and Mobile Computing, November 2020.
  6. [6] A. Gellert, A. Florea, Investigating a New Design Pattern for Efficient Implementation of Prediction Algorithms, Journal of Digital Information Management, Vol. 11, Issue 5, ISSN 0972-7272, pp. 366-377, October 2013.
  7. [7] A. Graves, Supervised Sequence Labelling with Recurrent Neural Networks, Studies in Computational Intelligence, Springer, ISBN: 978-3-642-24796-5, January 201210.1007/978-3-642-24797-2_2
  8. [8] K. Grolinger, A. L’Heureux, M. Capretz, L. Seewald, Energy Forecasting for Event Venues: Big Data and Prediction Accuracy, Energy and Buildings, Vol. 112, pp. 222-233, 2016.10.1016/j.enbuild.2015.12.010
  9. [9] L. Hernández, C. Baladrón, J. Aguiar, B. Carro, A. Sánchez-Esguevillas, J. Lloret, Artificial neural networks for short-term load forecasting in microgrids environment, Energy, Vol. 75, pp. 252-264, 2014.10.1016/j.energy.2014.07.065
  10. [10] S. Hochreiter, J. Schmidhuber, Long Short-Term Memory, Neural Computation, Vol. 9, No. 8, pp. 1735-1780, 1997.
  11. [11] K. Kavaklioglu, Modeling and prediction of Turkey’s electricity consumption using Support Vector Regression, Applied Energy, Vol. 88, Issue 1, pp. 368-375, 2011.10.1016/j.apenergy.2010.07.021
  12. [12] T. Khatib, A. Mohamed, K. Sopian, M. Mahmoud, Solar Energy Prediction for Malaysia Using Artificial Neural Networks, International Journal of Photoenergy, Vol. 2012, 2012.10.1155/2012/419504
  13. [13] H. Khosravani, M.D.M. Castilla, M. Berenguel, A. Ruano, P. Ferreira, A Comparison of Energy Consumption Prediction Models Based on Neural Networks of a Bioclimatic Building, Energies, Vol. 9, Issue 1, 2016.10.3390/en9010057
  14. [14] C. Monteiro, L.A. Fernandez-Jimenez, I.J. Ramirez-Rosado, A. Muñoz-Jimenez, Pedro M. Lara-Santillan, Short-Term Forecasting Models for Photovoltaic Plants: Analytical versus Soft-Computing Techniques, Mathematical Problems in Engineering, Vol. 2013, 2013.10.1155/2013/767284
  15. [15] J. Park, D. Yi, S. Ji, Analysis of Recurrent Neural Network and Predictions, Symmetry, Vol. 12, No. 4, 2020.10.3390/sym12040615
DOI: https://doi.org/10.2478/ijasitels-2020-0009 | Journal eISSN: 2559-365X | Journal ISSN: 2067-354X
Language: English
Page range: 80 - 89
Published on: Dec 24, 2020
Published by: Lucian Blaga University of Sibiu
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2020 Miroslav-Andrei Bachici, Arpad Gellert, published by Lucian Blaga University of Sibiu
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.