References
- Guan, Z. et al. Artificial intelligence in diabetes management: advancements, opportunities, and challenges. Cell Reports Medicine (2023).
- Shen, D, Wu, G. & Suk, H. -I. Deep learning in medical image analysis. Annu. Review biomedical engineering 19, 221–248 (2017).
- Hatamizadeh, A. et al. Unetr: Transformers for 3d medical image segmentation. In Proceedings of the IEEE/CVF winter conference on applications of computer vision, 574–584 (2022).
- Chen, X. et al. Learning active contour models for medical image segmentation. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, 11632–11640 (2019).
- Chen, B., Liu, Y., Zhang, Z., Lu, G. & Kong, A. W. K. Transattunet: Multi-level attention-guided u-net with transformer for medical image segmentation. IEEE Transactions on Emerg. Top. Comput. Intell. (2023).
- Long, J., Shelhamer, E. & Darrell, T. Fully convolutional networks for semantic segmentation. In Proceedings of the IEEE conference on computer vision and pattern recognition, 3431–3440 (2015).
- Ronneberger, O., Fischer, P. & Brox, T. U-net: Convolutional networks for biomedical image segmentation. In Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015: 18th International Conference, Munich, Germany, October 5-9, 2015, Proceedings, Part III 18, 234–241 (Springer, 2015).
- Ibtehaz, N. & Kihara, D. Acc-unet: A completely convolutional unet model for the 2020s. In International Conference on Medical Image Computing and Computer-Assisted Intervention, 692 – 702 (Springer, 2023).
- Zhou, Z., Rahman Siddiquee, M. M., Tajbakhsh, N. & Liang, J. Unet++: A nested u-net architecture for medical image segmentation. In Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support: 4th International Workshop, DLMIA 2018
- 1Isensee, F., Jaeger, P. F., Kohl, S. A., Petersen, J. & Maier-Hein, K. H. nnu-net: a self-configuring method for deep learning-based biomedical image segmentation. Nat. methods 18, 203–211 (2021).
- Huang, H. et al. Unet 3+: A full-scale connected unet for medical image segmentation. In ICASSP 2020-2020 IEEE international conference on acoustics, speech and signal processing (ICASSP), 1055–1059 (IEEE, 2020).
- Oktay, O. et al. Attention u-net: Learning where to look for the pancreas. arXiv preprint arXiv:1804.03999 (2018).
- Nazir, A. et al. Off-enet: An optimally fused fully end-to-end network for automatic dense volumetric 3d intracranial blood vessels segmentation. IEEE Transactions on Image Process. 29, 7192–7202 (2020).
- Cao, H. et al. Swin-unet: Unet-like pure transformer for medical image segmentation. In European conference on computer vision, 205–218 (Springer, 2022).
- 16. Chen, J. et al. Transunet: Transformers make strong encoders for medical image segmentation. arXiv preprint arXiv:2102.04306 (2021).
- Zhou, H.-Y. et al. nnformer: Interleaved transformer for volumetric segmentation. arXiv preprint arXiv:2109.03201 (2021).
- Heidari, M. et al. Hiformer: Hierarchical multi-scale representations using transformers for medical image segmentation. In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), 6202–6212 (2023).
- Wang, Y., Xiao, B., Bi, X., Li, W. & Gao, X. Mcf: Mutual correction framework for semi-supervised medical image segmentation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 15651–15660 (2023).
- Zhao, C. et al. Context-aware network fusing transformer and v-net for semi-supervised segmentation of 3d left atrium. Expert. Syst. with Appl. 214, 119105 (2023).
- Bai, Y., Chen, D., Li, Q., Shen, W. & Wang, Y. Bidirectional copy-paste for semi-supervised medical image segmentation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 11514–11524 (2023).
- Yap, M. H. et al. Automated breast ultrasound lesions detection using convolutional neural networks. IEEE journal biomedical health informatics 22, 1218–1226 (2017).
- Staal, J., Abràmoff, M. D., Niemeijer, M., Viergever, M. A. & Van Ginneken, B. Ridge-based vessel segmentation in color images of the retina. IEEE transactions on medical imaging 23, 501–509 (2004).
- Bernal, J. et al. Wm-dova maps for accurate polyp highlighting in colonoscopy: Validation vs. saliency maps from physicians. Comput. Medical imaging graphics 43, 99–111 (2015).
- Zhang, Z. et al. Self-aware and cross-sample prototypical learning for semi-supervised medical image segmentation. arXiv preprint arXiv:2305.16214 (2023).
- Tsai, A. et al. A shape-based approach to the segmentation of medical imagery using level sets. IEEE transactions on medical imaging 22, 137–154 (2003).
- Held, K. et al. Markov random field segmentation of brain mr images. IEEE transactions on medical imaging 16, 878–886 (1997).
- Wang, X., Girshick, R., Gupta, A. & He, K. Non-local neural networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2018).
- Peng, Y., Sonka, M. & Chen, D. Z. U-net v2: Rethinking the skip connections of u-net for medical image segmentation. arXiv preprint arXiv:2311.17791 (2023).
- Zhang, Y., Liu, H. & Hu, Q. Transfuse: Fusing transformers and cnns for medical image segmentation. In Medical Image Computing and Computer Assisted Intervention – MICCAI 2021: 24th International Conference, Strasbourg, France, September 27–October 1, 2021, Proceedings, Part I 24, 14–24 (Springer, 2021).
- Wang, Z. et al. Smeswin unet: Merging cnn and transformer for medical image segmentation. In International Conference on Medical Image Computing and Computer-Assisted Intervention, 517 – 526 (Springer, 2022).
- Chen, Y. et al. Scunet++: Swin-unet and cnn bottleneck hybrid architecture with multi-fusion dense skip connection for pulmonary embolism ct image segmentation. In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, 7759– 7767 (2024).
- Hendrycks, D. & Gimpel, K. Gaussian error linear units (gelus). arXiv preprint arXiv:1606.08415 (2016).