Have a personal or library account? Click to login
PSwinUNet: Bridging Local and Global Contexts for Accurate Medical Image Segmentation with Semi-Supervised Learning Cover

PSwinUNet: Bridging Local and Global Contexts for Accurate Medical Image Segmentation with Semi-Supervised Learning

Open Access
|Sep 2025

References

  1. Guan, Z. et al. Artificial intelligence in diabetes management: advancements, opportunities, and challenges. Cell Reports Medicine (2023).
  2. Shen, D, Wu, G. & Suk, H. -I. Deep learning in medical image analysis. Annu. Review biomedical engineering 19, 221–248 (2017).
  3. Hatamizadeh, A. et al. Unetr: Transformers for 3d medical image segmentation. In Proceedings of the IEEE/CVF winter conference on applications of computer vision, 574–584 (2022).
  4. Chen, X. et al. Learning active contour models for medical image segmentation. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, 11632–11640 (2019).
  5. Chen, B., Liu, Y., Zhang, Z., Lu, G. & Kong, A. W. K. Transattunet: Multi-level attention-guided u-net with transformer for medical image segmentation. IEEE Transactions on Emerg. Top. Comput. Intell. (2023).
  6. Long, J., Shelhamer, E. & Darrell, T. Fully convolutional networks for semantic segmentation. In Proceedings of the IEEE conference on computer vision and pattern recognition, 3431–3440 (2015).
  7. Ronneberger, O., Fischer, P. & Brox, T. U-net: Convolutional networks for biomedical image segmentation. In Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015: 18th International Conference, Munich, Germany, October 5-9, 2015, Proceedings, Part III 18, 234–241 (Springer, 2015).
  8. Ibtehaz, N. & Kihara, D. Acc-unet: A completely convolutional unet model for the 2020s. In International Conference on Medical Image Computing and Computer-Assisted Intervention, 692 – 702 (Springer, 2023).
  9. Zhou, Z., Rahman Siddiquee, M. M., Tajbakhsh, N. & Liang, J. Unet++: A nested u-net architecture for medical image segmentation. In Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support: 4th International Workshop, DLMIA 2018
  10. 1Isensee, F., Jaeger, P. F., Kohl, S. A., Petersen, J. & Maier-Hein, K. H. nnu-net: a self-configuring method for deep learning-based biomedical image segmentation. Nat. methods 18, 203–211 (2021).
  11. Huang, H. et al. Unet 3+: A full-scale connected unet for medical image segmentation. In ICASSP 2020-2020 IEEE international conference on acoustics, speech and signal processing (ICASSP), 1055–1059 (IEEE, 2020).
  12. Oktay, O. et al. Attention u-net: Learning where to look for the pancreas. arXiv preprint arXiv:1804.03999 (2018).
  13. Nazir, A. et al. Off-enet: An optimally fused fully end-to-end network for automatic dense volumetric 3d intracranial blood vessels segmentation. IEEE Transactions on Image Process. 29, 7192–7202 (2020).
  14. Cao, H. et al. Swin-unet: Unet-like pure transformer for medical image segmentation. In European conference on computer vision, 205–218 (Springer, 2022).
  15. 16. Chen, J. et al. Transunet: Transformers make strong encoders for medical image segmentation. arXiv preprint arXiv:2102.04306 (2021).
  16. Zhou, H.-Y. et al. nnformer: Interleaved transformer for volumetric segmentation. arXiv preprint arXiv:2109.03201 (2021).
  17. Heidari, M. et al. Hiformer: Hierarchical multi-scale representations using transformers for medical image segmentation. In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), 6202–6212 (2023).
  18. Wang, Y., Xiao, B., Bi, X., Li, W. & Gao, X. Mcf: Mutual correction framework for semi-supervised medical image segmentation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 15651–15660 (2023).
  19. Zhao, C. et al. Context-aware network fusing transformer and v-net for semi-supervised segmentation of 3d left atrium. Expert. Syst. with Appl. 214, 119105 (2023).
  20. Bai, Y., Chen, D., Li, Q., Shen, W. & Wang, Y. Bidirectional copy-paste for semi-supervised medical image segmentation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 11514–11524 (2023).
  21. Yap, M. H. et al. Automated breast ultrasound lesions detection using convolutional neural networks. IEEE journal biomedical health informatics 22, 1218–1226 (2017).
  22. Staal, J., Abràmoff, M. D., Niemeijer, M., Viergever, M. A. & Van Ginneken, B. Ridge-based vessel segmentation in color images of the retina. IEEE transactions on medical imaging 23, 501–509 (2004).
  23. Bernal, J. et al. Wm-dova maps for accurate polyp highlighting in colonoscopy: Validation vs. saliency maps from physicians. Comput. Medical imaging graphics 43, 99–111 (2015).
  24. Zhang, Z. et al. Self-aware and cross-sample prototypical learning for semi-supervised medical image segmentation. arXiv preprint arXiv:2305.16214 (2023).
  25. Tsai, A. et al. A shape-based approach to the segmentation of medical imagery using level sets. IEEE transactions on medical imaging 22, 137–154 (2003).
  26. Held, K. et al. Markov random field segmentation of brain mr images. IEEE transactions on medical imaging 16, 878–886 (1997).
  27. Wang, X., Girshick, R., Gupta, A. & He, K. Non-local neural networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2018).
  28. Peng, Y., Sonka, M. & Chen, D. Z. U-net v2: Rethinking the skip connections of u-net for medical image segmentation. arXiv preprint arXiv:2311.17791 (2023).
  29. Zhang, Y., Liu, H. & Hu, Q. Transfuse: Fusing transformers and cnns for medical image segmentation. In Medical Image Computing and Computer Assisted Intervention – MICCAI 2021: 24th International Conference, Strasbourg, France, September 27–October 1, 2021, Proceedings, Part I 24, 14–24 (Springer, 2021).
  30. Wang, Z. et al. Smeswin unet: Merging cnn and transformer for medical image segmentation. In International Conference on Medical Image Computing and Computer-Assisted Intervention, 517 – 526 (Springer, 2022).
  31. Chen, Y. et al. Scunet++: Swin-unet and cnn bottleneck hybrid architecture with multi-fusion dense skip connection for pulmonary embolism ct image segmentation. In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, 7759– 7767 (2024).
  32. Hendrycks, D. & Gimpel, K. Gaussian error linear units (gelus). arXiv preprint arXiv:1606.08415 (2016).
Language: English
Page range: 33 - 42
Published on: Sep 30, 2025
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2025 Zhixuan Zhao, Bailin Liu, Hongpei Zhang, Chentao Qian, Yijian Zhang, published by Xi’an Technological University
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.