References
- Whittington, J. C., McCaffary, D., Bakermans, J. J., & Behrens, T. E. How to build a cognitive map. Nature Neuroscience, 1-16. (2022).
- Farzanfar, D., Spiers, H. J., Moscovitch, M., & Rosenbaum, From cognitive maps to spatial schemas. Nature Reviews Neuroscience, R. S. (2022).
- Rueckemann, J. W., Sosa, M., Giocomo, L. M., & Buffalo, E. A. (2021). The grid code for ordered experience. Nature Reviews Neuroscience, 22(10), 637-649.
- Andrew Szot and Alex Clegg et al. Habitat 2.0: Training Home Assistants to Rearrangetheir Habitat, Advances in Neural Information Processing Systems, 2021.
- Foster, D., Morris, R., Dayan, P. et al. A model of hippocampally dependent navigation, using the temporal difference learning rule. Hippocampus 10, 1–16 (2021).
- The Tolman-Eichenbaum Machine: Unifying Spaceand Relational Memory through Generalization in the Hippocampal Formation. Whittington et al., 2020, Cell 183, 1249–1263.
- Everett M, Chen Y F, How J P. Collision avoidance in pedestrian-rich environments with deep reinforcement learning[J]. IEEE Access, 2021, 9: 10357-10377.
- Shanshan Qin, Shiva Farashahi, David Lipshutz, Coordinated drift of receptive fields in Hebbian/anti-Hebbian network models during noisy representation learning, Nature Neuroscience, pages339–349 (2023)
- Laura Cantini, Hope4Genes: a Hopfield-like class prediction algorithm for transcriptomic data, Scientific Reports, 337 (2019)
- Zhila Agharezaei, Reza Firouzi, Samira Hassanzadeh, Computer-aided diagnosis of keratoconus through VAE-augmented images using deep learning, Scientific Reports, 20586 (2023).