References
- Goodfellow I, Pouget-Abadie J, Mirza M, Xu B, WardeFarley D, Ozair S, Courville A, Bengio Y. Generative adversarial nets. In: Proceedings of the 2014 Conference on Advances in Neural Information Processing Systems 27. Montreal, Canada: Curran Associates, Inc., 2014. 2672–2680.
- Dong H, Neekhara P, Wu C, et al. Unsupervised image-to-image translation with generative adversarial networks [J]. 2017.
- Huang X, Liu M Y, Belongie S, et al. Multimodal unsupervised image-to-image translation[A].// Proceedings of the European Conference on Computer Vision [C]. 2018:172–189.
- Ronneberger O, Fischer P, Brox T. U-Net: Convolutional Networks for Biomedical Image Segmentation [J]. Springer, Cham, 2015.
- YU X, FATIH P. Imagining the Unimaginable Faces by Deconvolutional Networks [J]. IEEE Transactions on Image Processing, 2018: 2747–2761.
- Odena A, Dumoulin M et al. “Deconvolution and Checkerboard Artifacts”, Distill, 2016.
http://doi.org/10.23915/distill . - Gupta A, Zou J. Feedback GAN for DNA Optimizes Protein Functions [J]. Nature Machine Intelligence, 2019, 1(2): 105–111.
- Goodfellow I, Pouget-Abadie J, Mirza M, et al. Generative adversarial networks [J]. Communications of the ACM, 2020, 63(11): 139–144.
- Liang X, Chen L, Nguyen D, et al. Generating synthesized computed tomography (CT) from conebeam computed tomography (CBCT) using CycleGAN for adaptive radiation therapy [J]. Physics in Medicine & Biology, 2019, 64(12): 125002.
- Zhu J-Y, Park T, Isola P, et al. Unpaired image-to-image translation using cycle consistent adversarial networks [C]//IEEE international conference on computer vision, 2017: 2223–2232.
- Gulrajani I, Ahmed F, Arjovsky M, et al. Improved Training of Wasserstein GANs [C]// Advances in Neural Information Processing Systems, Long beach, USA, 2017: 5769–5779.