Have a personal or library account? Click to login

The Time-Sensitive Networking Scheduling Algorithm Based on Q-learning

By:
Open Access
|Mar 2024

References

  1. Messenger J L, Time-Sensitive Networking: An Introduction [J]. IEEE Communications Standards Magazine, 2018, 2(2): 2933. DOI:10.1109/MCOMSTD. 2018.1700047.
  2. Farzaneh M H, Kugele S, Knoll A. A graphical modeling tool supporting automated schedule synthesis for time-sensitive networking [C]. In: 2017 22nd IEEE International Conference on Emerging Technologies and Factory Automation (ETFA), 2017: 1–8.
  3. Oliver R S, Craciunas S S, Steiner W. IEEE 802.1Qbv Gate Control List Synthesis using Array Theory Encoding [C]//IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS). IEEE, 2018. DOI:10.1109/RTAS.2018.00008.
  4. Pahlevan M, Obermaisser R. Genetic Algorithm for Scheduling Time-Triggered Traffic in Time-Sensitive Networks[C]//2018 IEEE 23rd International Conference on Emerging Technologies and Factory Automation. IEEE, 2018. DOI:10.1109/ETFA.2018.8502515.
  5. Gavrilut V, Pop P. Scheduling in time sensitive networks (TSN) for mixed-criticality industrial applications [C]//14 Th IEEE International Workshop on Factory Communication Systems. IEEE, 2018:1–4. DOI:10.1109/WFCS.2018.8402374.
  6. Santos A C T D, Schneider B, Nigam V, TSNSCHED: Automated Schedule Generation for Time Sensitive Networking[C]//2019 Formal Methods in Computer Aided Design (FMCAD). 2019. DOI:10.23919/FMCAD.2019.8894249.
  7. Bello L L, Steiner W. A perspective on IEEE time-sensitive networking for industrial communication and automation systems [J]. Proceedings of the IEEE, 2019, 107(6): 1094–1120.
  8. Mai T L, Navet N, Migge J. A hybrid machine learning and schedulability analysis method for the verification of TSN networks [C]. In: 2019 15th IEEE International Workshop on Factory Communication Systems (WFCS), 2019: 1–8.
  9. Zhong C, Jia H, Wan H, et al. DRLS: A Deep Reinforcement Learning Based Scheduler for Time-Triggered Ethernet[C]//2021 International Conference on Computer Communications and Networks (ICCCN). IEEE, 2021: 1–11.
  10. Jia H, Jiang Y, Zhong C, et al. TTDeep: Time-Triggered Scheduling for Real-Time Ethernet via Deep Reinforcement Learning [C]. In: 2021 IEEE Global Communications Conference (GLOBECOM), 2021: 1–6.
  11. Jin X, Xia C, Guan N. Real-time Scheduling of Massive Data in Time Sensitive Networks with a Limited Number of Schedule Entries [J]. IEEE Access, 2020, PP (99): 1–1. DOI:10.1109/ACCESS.2020.2964690.
  12. Bujosa D, Ashjaei M, Papadopoulos A V, et al. HERMES: Heuristic multi-queue scheduler for TSN time-triggered traffic with zero reception jitter capabilities [C]. In: Proceedings of the 30th International Conference on Real-Time Networks and Systems, 2022: 70–80.
  13. Li C, Zhang C, Zheng W. Joint Routing and Scheduling for Dynamic Applications in Multicast Time-Sensitive Networks [C]//IEEE International Conference on Communications Workshops. IEEE, 2021. DOI:10.1109/ICCWorkshops50388.2021.9473540.
  14. Nasrallah A, Thyagaturu A S, Alharbi Z, et al. Ultra-low latency (ULL) networks: The IEEE TSN and IETF DetNet standards and related 5G ULL research [J]. IEEE Communications Surveys & Tutorials, 2018, 21(1): 88–145.
  15. Reusch N, Zhao L, Craciunas S S, et al. Window-Based Schedule Synthesis for Industrial IEEE 802.1Qbv TSN Networks [C]// 2020 16th IEEE International Conference on Factory Communication Systems (WFCS). IEEE, 2020.
Language: English
Page range: 78 - 86
Published on: Mar 28, 2024
Published by: Sciendo
In partnership with: Paradigm Publishing Services
Publication frequency: 4 times per year

© 2024 Jiayi Zhao, Jing Cheng, published by Sciendo
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.