Have a personal or library account? Click to login
By:
Open Access
|Mar 2024

References

  1. W. L. He M.L. Zhu. Current status and future analysis of capsule neural network research [J] Computer Engineering and Application, 2021, 57(03):33–43.
  2. Yang Jucheng Han Shujie Mao Lei et al. A review of capsule network modeling [J] Journal of Shandong University (Engineering Edition), 2019, 49(06):1–10.
  3. Zheng Yuanpan Li Guangyang Li Ye. A research review of deep learning in image recognition [J]. Computer Engineering and Applications, 2019, 55(12):20–36.
  4. YANG Xiaofeng ZHANG Laifu WANG Zhipeng et al. Cross-domain pedestrian re-identification based on capsule networks [J] Computer Engineering and Science, 2021, 43(09):1591–1599.
  5. JIANG Hong JIA Shuaiyu YAO Hongge. Capsule network for object recognition in complex realistic scenes [J] Journal of Xi’an University of Technology 2019 39(06):712719.DOI:10.16185/j.jxatu.edu.cn.2019. 06.014.
  6. Liu Linsong Tong Minglei Wu Dongliang. SA-CapsNefSelf-attentive capsule networklJl. Computer Application Research 2021 38(10):3005-3008+3039. DOI:10.19734/j.issn.10013695.2021.03.0092.
  7. Qun Zhou. Research on hyperspectral remote sensing image classification based on capsule neural network [D] Northern Nationalities University, 2021. DOI:10.27754/d.cnki.gbfmz.2021.000172.
  8. Yao YQ. Research on facial expression feature extraction and recognition algorithm based on capsule network [D] Beijing Jiaotong University, 2020. DOI: 10.26944/d.cnki.gbfju.2019.000835.
  9. Lou Yue. Research on plant recognition method based on improved capsule neural network [D]. Jilin University,2021.DOI:10.27163/d.cnki.gjlnu.2020.0001 42.
  10. H.H. Zhang. Research and development of security system based on Caps-Net face recognition [D]. Ximiang University, 2021. DOI:10.27429/d.cnki.gxjdu.2020.00355.
  11. Shan Chen Rencheng Sun Fengjing Shao et al. Research and improvement of dynamic routing based on capsule networks [J] Computer Engineering 2022, 48(05):208–214.DOI:10.19678/j.issn.1003428.0062928.
  12. Sabour, S., Frosst, N., & Hinton, G. E. (2017). Dynamic routing between capsules. In Advances in Neural Information Processing Systems (pp.3856–3866).
  13. Zhang, Y., Yang, J., & Davis, L. S. (2018). Capsule network performance on complex data. IEEE Transactions on Pattern Analysis and Machine Intelligence, 41(7), 1552–1566.
  14. Xiang, S., Wang, Y., Liu, Z., & Gilmore, J. H. (2019). Dynamic capsule attention for visual question answering. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 6255–6264).
  15. Tang, H., Yu, N., Wang, R., & Wang, M. (2019). Recurrent capsule network for person re-identification. In Proceedings of the IEEE International Conference on Computer Vision (pp. 7130–7139..
  16. Lecun Y Bottou L et al. Gradient-based learning applied to document recognition[J]. Proceedings of IEEE, 1998, 86(11):2278–2324.
  17. Krizhevsky A. Sutskever I Hinton G E. Imagenet classification with deep convolutional neural networks [C] // Advances in neural information processing systems. 2012: 1097–1105.
  18. Deng F Pu S Chen X et al. Hyperspectral image classification with capsule network using limited training samples [J]. Sensors, 2018, 18(9):22.
Language: English
Page range: 22 - 31
Published on: Mar 28, 2024
Published by: Xi’an Technological University
In partnership with: Paradigm Publishing Services
Publication frequency: 4 times per year

© 2024 JiangRong Shi, Li Zhao, published by Xi’an Technological University
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.