References
- A. Newell, K. Yang, and J. Deng. Stacked hourglass networks for human pose estimation. In ECCV, 2016.
- P. F. Felzenszwalb and D. P. Huttenlocher. Pictorial structures for object recognition. In IJCV, 2005.
- M. Andriluka, S. Roth, and B. Schiele. Monocular 3D pose estimation and tracking by detection. In CVPR, 2010.
- K. He, X. Zhang, S. Ren, and J. Sun. Deep Residual Learning for Image Recognition. In CVPR, 2016
- L. Pishchulin, E. Insafutdinov, S. Tang, B. Andres, M. Andriluka, P. Gehler, and B. Schiele. Deepcut: Joint subset partition and labeling for multi person pose estimation. In CVPR, 2016.
- E. Insafutdinov, L. Pishchulin, B. Andres, M. Andriluka, and B. Schiele. Deepercut: A deeper, stronger, and faster multi person pose estimation model. In ECCV, 2016.
- Cao,Z,Simon,T,Wei,S,et al.Realtime multi-perpson 2d pose estimation using part affinity fields [A].//Proc of the IEEE Conference on Computer Vision and Pattern Recongnitio n [C], Honolulu, HI, USA: IEEE, 2017:1302–1310.
- M. Kocabas, S. Karagoz, and E. Akbas. MultiPoseNet: Fast multi-person pose estimation using pose residual network. In ECCV, 2018.
- S. Hong, B. Roh, K.-H. Kim, Y. Cheon, and M. Park. PVANet: Lightweight Deep Neural Networks for Real-time Object Detection. In arXiv preprint arXiv:1611.08588, 2016.
- Z. Cao, T. Simon, S. Wei, and Y. Sheikh. Realtime Multi-Person 2D Pose Estimation using Part Affinity Fields. In CVPR, 2017.
- A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand, M. Andreetto, and H. Adam. Mobilenets: Efficient convolutional neural networks for mobile vision applications. In arXiv preprint arXiv:1704.04861, 2017.
- B. Xiao, H. Wu, and Y. Wei. Simple Baselines for Human Pose Estimation and Tracking. In ECCV, 2018.
- A. Toshev and C. Szegedy. Deeppose: Human pose estimation via deep neural networks. In CVPR, 2014.
- U. Iqbal and J. Gall. Multi-person pose estimation with local joint-to-person associations. In ECCV Workshops, Crowd Understanding, 2016.
- Li Yifan, Yuan Longjian, Wang Rui. Improved Lightweight Human Action Recognition Model Based on OpenPose % J Electronic Measurement Technology [J]. 2022, 45(01): 89–95.
- K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image recognition. In ICLR, 2015.