Have a personal or library account? Click to login
Research on Iris Feature Extraction and Recognition Technology Based on Deep Learning Cover

Research on Iris Feature Extraction and Recognition Technology Based on Deep Learning

By: Yufei Chen,  Yiyang Zhao,  Bing Zhao and  Hao Wei  
Open Access
|Mar 2024

References

  1. Mach. IntelH. Proenca, S. Filipe, R. Santos, et al, The UBIRIS.v2: A database of visible wavelength iris images captured on-the-move and at-a-distance[J]. IEEE Trans. Pattern Anal, 2010, 32(8):1529–1535.
  2. Fawzi A, Samulowitz H, Turaga D, et al. Adaptive data augmentation for image classification[C].2016 IEEE International Conference on Image Processing (ICIP). IEEE,2016.
  3. Carl M , Goldberg R .Iris biometrics: from segmentation to template security[J].Computing reviews, 2013, 54(11):672–673.
  4. Hu J, Shen L, Sun G. Squeeze-and-excitation networks; proceedings of the Proceedings of the IEEE conference on computer vision and pattern recognition, F, [C] Salt Lake City, UT, USA 2018.
  5. Ibrahim M T, Khan T M, Khan S A, et al. Iris localization using local histogram and other image statistics[J]. Optics & Lasers in Engineering, 2012, 50(5):645–654.
  6. Chen Y, Wu C, Wang Y. T-center: a novel feature extraction approach towards large-scale iris recognition [J]. IEEE Access, 2020, 8: 32365–32375.
  7. Leonard Flom, Aran Safir. Iris recognition system [P]. United States Patent No. 46413491987.
  8. Liu M, Zhou Z, Shang P, et al. Fuzzified image enhancement for deep learning in iris recognition [J]. IEEE Transactions on Fuzzy Systems, 2019, 28(1): 929.
  9. Zhao Z, Kumar A. Towards more accurate iris recognition using deeply learned spatially corresponding features; proceedings of the Proceedings of the IEEE international conference on computer vision, F, [C] The Hong Kong Polytechnic University 2017.
  10. Nguyen K, Fookes C, Ross A, et al. Iris recognition with off-the-shelf CNN features: a deep learning perspective [J]. IEEE Access, 2017, 6: 18848–55.
  11. Lei Songze, Zhang Boxing, Wang Yanhong, et al. Object Recognition using Non-negative Matrix Factorization with Sparseness Constraint and Neural Network. information [J], 2019, 10(37):1–17(EI).
  12. Othman N, Dorizzi B, Garcia-Salicetti S. OSIRIS: An open source iris recognition software [J]. Pattern Recognition Letters, 2016, 82: 124–31.
  13. Raja K B , Raghavendra R , Vemuri V K , et al. Smartphone based visible iris recognition using deep sparse filtering[J]. Pattern Recognition Letters, 2015, 57:33–42.
  14. Mengjia Wang, Research on iris recognition algorithm based on deep learning [D]. Jilin University, 2022.
  15. Qi Zhao, Research on Iris Recognition Algorithm Based on Deep Learning [D]. Xidian University, 2020.
  16. Liu N, Zhang M, Li H, et al. Deepiris: Learning pairwise filter bank for heterogeneous iris verification [J]. Pattern Recognition Letters, 2016, 82: 154–61.
  17. Alinia Lat R, Danishvar S, Heravi H, et al. Boosting Iris Recognition by Margin-Based Loss Functions [J]. Algorithms, 2022, 15(4): 118.
  18. Roy K, Bhattacharya P Iris recognition with support vector machines[J]. Lecture Notes in Science. 2006, 3832: 486–492.
  19. Gangwar A, Joshi A. DeepIrisNet: deep iris representation with applications in iris recognition and cross-sensor iris recognition; proceedings of the 2016 IEEE international conference on image processing (ICIP), F, [C]. IEEE 2016.
Language: English
Page range: 35 - 45
Published on: Mar 15, 2024
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2024 Yufei Chen, Yiyang Zhao, Bing Zhao, Hao Wei, published by Xi’an Technological University
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.