References
- Lu H, Li Y, Chen M, et al. Brain intelligence: go beyond artificial intelligence [J]. Mobile Networks and Applications, 2018, 23(2): 368–375.
- Lu H, Zhang M, Xu X, et al. Deep fuzzy hashing network for efficient image retrieval [J]. IEEE Transactions on Fuzzy Systems, 2020.
- Lu, H., Member, S., Tang, Y., & Sun, Y. (2020). DRRS-BC: Decentralized Routing registration system based on blockchain. IEEE/CAA Journal of Automatica Sinica, 1–9.
- Lu H, Zhang Y, Li Y, et al. User-oriented virtual mobile network resource management for vehicle communications[J]. IEEE Transactions on Intelligent Transportation Systems, 2020.
- Lu H, Li Y, Mu S, et al. Motor anomaly detection for unmanned aerial vehicles using reinforcement learning [J]. IEEE internet of things journal, 2017, 5(4): 2315–2322.
- Chen Z, Lu H, Tian S, et al. Construction of a Hierarchical Feature Enhancement Network and Its Application in Fault Recognition [J]. IEEE Transactions on Industrial Informatics, 2020.
- LeCun Y, Bottou L, Bengio Y, et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86(11): 2278–2324.
- H. Lu, R. Yang, Z. Deng, Y. Zhang, G. Gao, R. Lan, “Chinese image captioning via fuzzy attention-based DenseNet-BiLSTM”, ACM Transactions on Multimedia Computing Communications and Applications, 2020.
- Dong Chao, Loy Chen Change, He Kaiming, Tang Xiaoou. Image Super-Resolution Using Deep Convolutional Networks. [J]. IEEE transactions on pattern analysis and machine intelligence,2016,38(2).
- Shi W, Caballero J, Huszár F, et al. Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2016: 1874–1883.
- Kim J, Kwon Lee J, Mu Lee K. Deeply-recursive convolutional network for image super-resolution[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2016: 1637–1645.
- Ledig C, Theis L, Huszár F, et al. Photo-realistic single image super-resolution using a generative adversarial network[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2017: 4681–4690.
- Goodfellow I, Pouget-Abadie J, Mirza M, et al. Generative adversarial nets[C]//Advances in neural information processing systems. 2014: 2672–2680.
- Wang X, Yu K, Wu S, et al. Esrgan: Enhanced super-resolution generative adversarial networks[C]//Proceedings of the European Conference on Computer Vision (ECCV). 2018: 0–0.
- Kim J, Kwon Lee J, Mu Lee K. Accurate image super-resolution using very deep convolutional networks[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2016: 1646–1654.
- Wang X, Yu K, Dong C, et al. Recovering realistic texture in image super-resolution by deep spatial feature transform[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2018: 606–615.
- Timofte R, Rothe R, Van Gool L. Seven ways to improve example-based single image super resolution[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2016: 1865–1873.
- Zhang Y, Tian Y, Kong Y, et al. Residual dense network for image super-resolution[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2018: 2472–2481.
- Guo Y, Chen J, Wang J, et al. Closed-loop matters: Dual regression networks for single image super-resolution[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2020: 5407–5416.
- Sabour S, Frosst N, Hinton G E. Dynamic routing between capsules[C]//Advances in neural information processing systems. 2017: 3856–3866.
- Jaiswal A, AbdAlmageed W, Wu Y, et al. Capsulegan: Generative adversarial capsule network[C]//Proceedings of the European Conference on Computer Vision (ECCV). 2018: 0–0.
- Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition[J]. arXiv preprint arXiv:1409.1556, 2014.
- He K, Zhang X, Ren S, et al. Deep residual learning for image recognition[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2016: 770–778.
- Huang G, Liu Z, Van Der Maaten L, et al. Densely connected convolutional networks[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2017: 4700–4708.
- Arjovsky M, Bottou L. Towards principled methods for training generative adversarial networks [J]. arXiv preprint arXiv:1701.04862, 2017.
- Arjovsky M, Chintala S, Bottou L. Wasserstein gan[J]. arXiv preprint arXiv:1701.07875, 2017.
- Cao J, Mo L, Zhang Y, et al. Multi-marginal wasserstein gan [J]. arXiv preprint arXiv:1911.00888, 2019.