Have a personal or library account? Click to login
Research on Real-Time Fusion Technology of Range Telemetry Data Cover

Figures & Tables

Figure 1.

Data processing flowchart
Data processing flowchart

图 1

数据处理流程图
数据处理流程图

Literature correspondence alignment algorithm analysis

ApproachProblemLiterature number
P-FAThe problem of matching the frame data and the frame count when the frame is lost is not solved[13]
Large amount of calculation, not easy to promote[19]
P-TCMAThe number of data positions is wrong when the frame is dropped[18]
Data transmission delay is not considered[12]
P-ECADepends on device index value[16]
Frame count error has not been resolved[10]
No consideration of transmission delay[4]
Large amount of calculation, not easy to promote[3]

Literature correspondence algorithm analysis table

ApproachProblemLiterature number
PSF-QEAData error does not affect the frame length, causing quality misjudgment.[18]
To solve the judgment error caused by dropped frames[6]
PFF-QEAUnsolved the problem of different comparison results caused by dropped frames and errors[20]
The assessment basis is relatively simple[10]
Not given due to frame loss[3]
Data preprocessing requirements are high, and the incomplete F-frame data is discarded, which is not conducive to the full use of data.[5]
PSF-QEAThe calculation is cumbersome and not easy to promote[11]
Cluster center radius is not easy to choose[6]

累积错误对齐过程表

帧序号测站 A测站 B融合结果正确
128586655302858665530
265531654676546765531
365532653566535665532
465523655336552365533

Literature Corresponding QEA Analysis

ApproachProblemLiterature number
FF-QEAThe system overhead is large, and when the amount of data increases, the information is too late to process.[14]
Accurate quality evaluation when errors occur in unresolved frame counts[8]
SF-QEAIncreased algorithm time complexity[2]

实时选优算法统计表

处理方法问题文献编号
基于全帧的实时质量评估算法系统开销大,数据量增大时,信息来不及处理[14]
未解决帧计数出现误码时的精确质量评估[8]
基于子帧的实时质量评估算法算法时间复杂度增加[2]

事后选优算法统计表

处理方法问题文献编号
基于选段的事后质量评估算法数据误码并不 影响帧长度,造成质量误判。[18]
为解决丢帧引起的评判失误[6]
基于全帧的事后质量评估算法未解决丢帧误码引起的对比结果均不相同的问题[20]
评估依据较为单一[10]
未给出丢帧引起的[3]
数据预处理要求较高,丢弃残缺的全帧数据,不利于数据的充分利用。[5]
基于子帧的事后质量评估算法计算繁琐,不易推广[11]
聚类中心半径不易选取[6]

Accumulative error alignment process

Frame numberGS1GS2Fusion resultCorrect
128586655302858665530
265531654676546765531
365532653566535665532
465523655336552365533

事后对齐算法统计表

处理方法问题文献编号
事后标志位对齐未解决丢帧时的帧数据与帧计数的匹配问题[13]
计算量大,不易于推广[19]
事后时码匹 配对齐丢帧时数据位置数出错[18]
未考虑数据传输时延[12]
事后误差控 制对齐依赖设备指标值[16]
帧计数误码尚未解决[10]
未考虑传输时延[4]
计算量较大,不易于推广[3]

实时对齐算法统计表

处理方法问题文献编号
实时标志位 对齐帧计数误码影响较大[21]
累积错误[8]
实时时码匹配对齐
未考虑主站传输时延[21]
实时误差控 制对齐子帧时码延时计算未解决[14]
依赖设备指标值[2]
Language: English
Page range: 132 - 149
Published on: May 28, 2023
Published by: Xi’an Technological University
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2023 Hanghang Zhou, Xiaofeng Rong, Fangyuan Ma, Qianshi Yan, Yuchao She, Linjuan Fan, Mingjie Zhao, published by Xi’an Technological University
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.