References
- Krizhevsky A, Sutskever I, Hinton G E. Imagenet classification with deep convolutional neural networks. In: Proceedings of the 2012 Advances in Neural Information Processing Systems (NIPS). Lake Tahoe, USA: MIT Press, 2012. 1097–1105.
- GATYS L, ECKER A, BETHGE M.A Neural Algorithm of Artistic Style [J]. Journal of Vision, 2016, 16(12): 326.
- SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition [J]. ArXiv preprint ar Xiv, 2014(9):1–14.
- JOHNSON J, ALAHI A, FEI-FEI L. Perceptual losses for real-time style transfer and super-resolution [C]//European Conference on Computer Vision, 2016:694–711.
- LI Y J, FANG C, YANG J M, et al. Universal style transfer via feature transforms[C]//In Advances in Neural Information Processing Systems. California: NIPS, 2017: 386–396.
- Goodfellow I, Pouget-Abadie J, Mirza M, et al. Generative adversarial nets[C]//Advances in Neural Information Processing Systems, 2014: 2672–2680.
- Radford A, Metz L, Chintala S. Unsupervised representation learning with deep convolutional generative adversarial networks [J]. arXiv: 1511.06434, 2015.
- Zhu J Y Park T, Isola P, et al. Unpaired image-to-image translation using cycle-consistent adversarial networks [C] //IEEE International Conference on Computer Vision, 2017: 2223–2232.
- Szegedy, Christian, et al. Going deeper with convolutions. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2015.
- He, Kaiming, et al. Deep residual learning for image recognition. arXiv preprint arXiv:1512.03385(2015).
- He, Kaiming, and Jian Sun. Convolutional neural networks at constrained time cost. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2015.
- HUANG X, BELONGIE S. Arbitrary style transfer in real-time with adaptive instance normalization[C]//2017 IEEE International Conference on Computer Vision (ICCV). New York: IEEE Press, 2017:1510–1519.
- ULYANOV D, VEDALDI A, LEMPITSKY V. Improved texture networks: Maximizing quality and diversity in feed-forward stylization and texture synthesis [C] //Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017:6924–6932.
- Krizhevsky A, Sutskever I, Hinton G E.Imagenet classification with deep convolutional neural networks. In: Proceedings of the 2012 Advances in Neural Information Processing Systems (NIPS). Lake Tahoe, USA: MIT Press, 2012. 1097‒1105.
- GATYS L, ECKER A, BETHGE M.A Neural Algorithm of Artistic Style [J]. Journal of Vision, 2016, 16(12): 326.
- SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition [J]. ArXiv preprint arXiv, 2014(9):1–14.
- JOHNSON J, ALAHI A, FEI-FEI L. Perceptual losses for real-time style transfer and super-resolution[C]//European Conference on Computer Vision, 2016:694–711.
- LI Y J, FANG C, YANG J M, et al. Universal style transfer via feature transforms[C]//In Advances in Neural Information Processing Systems. California: NIPS, 2017: 386–396.
- Goodfellow I, Pouget-Abadie J, Mirza M, et al. Generative adversarial nets[C]//Advances in Neural Information Processing Systems, 2014: 2672–2680.
- Radford A, Metz L, Chintala S. Unsupervised representation learning with deep convolutional generative adversarial networks [J]. arXiv:1511.06434, 2015.
- Zhu J Y Park T, Isola P, et al. Unpaired image-to-image translation using cycle-consistent adversarial networks[C]//IEEE International Conference on Computer Vision, 2017: 2223–2232.
- Szegedy, Christian, et al. Going deeper with convolutions. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2015.
- He, Kaiming, et al. Deep residual learning for image recognition. arXiv preprint arXiv:1512.03385(2015).
- He, Kaiming, and Jian Sun. Convolutional neural networks at constrained time cost. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2015.
- HUANG X, BELONGIE S. Arbitrary style transferin real-time with adaptive instance normalization[C]//2017 IEEE International Conference on Computer Vision (ICCV). New York: IEEE Press, 2017:1510–1519.
- ULYANOV D, VEDALDI A, LEMPITSKY V. Improved texture networks: Maximizing quality and diversity in feed-forward stylization and texture synthesis[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017:6924–6932.