Aizawa, A. (2003). An information-theoretic perspective of tf–idf measures. Information Processing & Management, 39(1), 45-65.10.1016/S0306-4573(02)00021-3
Alcantara, L. L., Mahichi, F., & Park, Y. (2012). An Analysis of the Antibiotic Industry: An Innovator’s Dilemma?. Journal of International Business Research, 11(2), 1.
Asmussen, C. B., & Møller, C. (2019). Smart literature review: a practical topic modelling approach to exploratory literature review. Journal of Big Data, 6(1), 93.10.1186/s40537-019-0255-7
Belleau, F., Nolin, M. A., Tourigny, N., Rigault, P., & Morissette, J. (2008). Bio2RDF: towards a mashup to build bioinformatics knowledge systems. Journal of biomedical informatics, 41(5), 706-716.10.1016/j.jbi.2008.03.00418472304
Bhadury, A., Chen, J., Zhu, J., & Liu, S. (2016, April). Scaling up dynamic topic models. In Proceedings of the 25th International Conference on World Wide Web (pp. 381-390).10.1145/2872427.2883046
Blei, D. M., & Lafferty, J. D. (2006, June). Dynamic topic models. In Proceedings of the 23rd international conference on Machine learning (pp. 113-120).10.1145/1143844.1143859
Blei, D. M., Franks, K., Jordan, M. I., & Mian, I. S. (2006). Statistical modeling of biomedical corpora: mining the caenorhabditis genetic center bibliography for genes related to life span. Bmc Bioinformatics, 7(1), 250.10.1186/1471-2105-7-250153386816681860
Chen, B., Dong, X., Jiao, D., Wang, H., Zhu, Q., Ding, Y., & Wild, D. J. (2010). Chem2Bio2RDF: a semantic framework for linking and data mining chemogenomic and systems chemical biology data. BMC bioinformatics, 11(1), 255.10.1186/1471-2105-11-255288108720478034
Chen, B., Wang, H., Ding, Y., & Wild, D. (2014). Semantic breakthrough in drug discovery. Synthesis Lectures on the Semantic Web: Theory and Technology, 4(2), 1-142.10.2200/S00600ED1V01Y201409WEB009
Daelemans, W., & Hoste, V. (2002). Evaluation of machine learning methods for natural language processing tasks. In 3rd International conference on Language Resources and Evaluation (LREC 2002). European Language Resources Association (ELRA).
Deerwester, S., Dumais, S., Landauer, T., Furnas, G., & Beck, L. (1988, January). Improving information-retrieval with latent semantic indexing. In Proceedings of the ASIS annual meeting (Vol. 25, pp. 36-40). 143 OLD MARLTON PIKE, MEDFORD, NJ 08055-8750: INFORMATION TODAY INC.
Frick, J., Guha, R., Peryea, T., & Southall, N. T. (2015). Evaluating disease similarity using latent Dirichlet allocation. BioRxiv, 030593.10.1101/030593
Griffiths, T. L., Jordan, M. I., Tenenbaum, J. B., & Blei, D. M. (2004). Hierarchical topic models and the nested chinese restaurant process. In Advances in neural information processing systems (pp. 17-24).
Groth, P., Loizou, A., Gray, A. J., Goble, C., Harland, L., & Pettifer, S. (2014). API-centric linked data integration: The open PHACTS discovery platform case study. Journal of web semantics, 29, 12-18.10.1016/j.websem.2014.03.003
Hofmann, T. (1999, August). Probabilistic latent semantic indexing. In Proceedings of the 22nd annual international ACM SIGIR conference on Research and development in information retrieval (pp. 50-57).10.1145/312624.312649
King, G., & Lowe, W. (2003). An automated information extraction tool for international conflict data with performance as good as human coders: A rare events evaluation design. International Organization, 617-642.10.1017/S0020818303573064
Mimno, D., Wallach, H., Talley, E., Leenders, M., & McCallum, A. (2011, July). Optimizing semantic coherence in topic models. In Proceedings of the 2011 Conference on Empirical Methods in Natural Language Processing (pp. 262-272).
Newman, D., Lau, J. H., Grieser, K., & Baldwin, T. (2010, June). Automatic evaluation of topic coherence. In Human language technologies: The 2010 annual conference of the North American chapter of the association for computational linguistics (pp. 100-108).
Pammolli, F., Magazzini, L., & Riccaboni, M. (2011). The productivity crisis in pharmaceutical R&D. Nature reviews Drug discovery, 10(6), 428-438.10.1038/nrd340521629293
Philippidis, A. (2015). Despite Big Pharma Retreat, R&D Spending Advances: As Biotechs Fill the Research Gap, Developers of All Sizes Scramble to Reduce Risk. Genetic Engineering & Biotechnology News, 35(06), 6-7.10.1089/gen.35.06.03
Rizzo, S. J. S., Edgerton, J. R., Hughes, Z. A., & Brandon, N. J. (2013). Future viable models of psychiatry drug discovery in pharma. Journal of biomolecular screening, 18(5), 509-521.10.1177/108705711347587123392517
Siebert, M. (2020). How AI and knowledge graphs can make your research easier. Elsevier Connect. See at the URL: https://www.elsevier.com/connect/how-ai-and-knowledge-graphs-can-make-your-research-easier
Stott, K. (2017). Pharma’s broken business model: An industry on the brink of terminal decline, Endpoint News, 28 November 2017. See at the URL: https://endpts.com/pharmas-broken-business-model-anindustry-on-the-brink-of-terminal-decline.
Van Vlijmen, H. (2016, March). Open PHACTS: Semantic interoperability for drug discovery. In ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY (Vol. 251). 1155 16TH ST, NW, WASHINGTON, DC 20036 USA: AMER CHEMICAL SOC.
Wood, J., Tan, P., Wang, W., & Arnold, C. (2017, April). Source-LDA: Enhancing probabilistic topic models using prior knowledge sources. In 2017 IEEE 33rd International Conference on Data Engineering (ICDE) (pp. 411-422). IEEE.10.1109/ICDE.2017.99
Xiao, C., Zhang, P., Chaowalitwongse, W. A., Hu, J., & Wang, F. (2017, February). Adverse drug reaction prediction with symbolic latent dirichlet allocation. In Proceedings of the thirty-first AAAI conference on artificial intelligence.10.1609/aaai.v31i1.10717