Have a personal or library account? Click to login
Supporting secondary research in early drug discovery process through a Natural Language Processing based system Cover

Supporting secondary research in early drug discovery process through a Natural Language Processing based system

By:
Open Access
|May 2021

References

  1. Aizawa, A. (2003). An information-theoretic perspective of tf–idf measures. Information Processing & Management, 39(1), 45-65.10.1016/S0306-4573(02)00021-3
  2. Alcantara, L. L., Mahichi, F., & Park, Y. (2012). An Analysis of the Antibiotic Industry: An Innovator’s Dilemma?. Journal of International Business Research, 11(2), 1.
  3. Asmussen, C. B., & Møller, C. (2019). Smart literature review: a practical topic modelling approach to exploratory literature review. Journal of Big Data, 6(1), 93.10.1186/s40537-019-0255-7
  4. Balakrishnan, V., & Lloyd-Yemoh, E. (2014). Stemming and lemmatization: a comparison of retrieval performances.10.7763/LNSE.2014.V2.134
  5. Belleau, F., Nolin, M. A., Tourigny, N., Rigault, P., & Morissette, J. (2008). Bio2RDF: towards a mashup to build bioinformatics knowledge systems. Journal of biomedical informatics, 41(5), 706-716.10.1016/j.jbi.2008.03.00418472304
  6. Bhadury, A., Chen, J., Zhu, J., & Liu, S. (2016, April). Scaling up dynamic topic models. In Proceedings of the 25th International Conference on World Wide Web (pp. 381-390).10.1145/2872427.2883046
  7. Blei, D. M. (2012). Probabilistic topic models. Communications of the ACM, 55(4), 77-84.10.1145/2133806.2133826
  8. Blei, D. M., & Lafferty, J. D. (2006, June). Dynamic topic models. In Proceedings of the 23rd international conference on Machine learning (pp. 113-120).10.1145/1143844.1143859
  9. Blei, D. M., Franks, K., Jordan, M. I., & Mian, I. S. (2006). Statistical modeling of biomedical corpora: mining the caenorhabditis genetic center bibliography for genes related to life span. Bmc Bioinformatics, 7(1), 250.10.1186/1471-2105-7-250153386816681860
  10. Blei, D. M., Ng, A. Y., & Jordan, M. I. (2003). Latent dirichlet allocation. Journal of machine Learning research, 3(Jan), 993-1022.
  11. Chen, B., Dong, X., Jiao, D., Wang, H., Zhu, Q., Ding, Y., & Wild, D. J. (2010). Chem2Bio2RDF: a semantic framework for linking and data mining chemogenomic and systems chemical biology data. BMC bioinformatics, 11(1), 255.10.1186/1471-2105-11-255288108720478034
  12. Chen, B., Wang, H., Ding, Y., & Wild, D. (2014). Semantic breakthrough in drug discovery. Synthesis Lectures on the Semantic Web: Theory and Technology, 4(2), 1-142.10.2200/S00600ED1V01Y201409WEB009
  13. Daelemans, W., & Hoste, V. (2002). Evaluation of machine learning methods for natural language processing tasks. In 3rd International conference on Language Resources and Evaluation (LREC 2002). European Language Resources Association (ELRA).
  14. Deerwester, S., Dumais, S., Landauer, T., Furnas, G., & Beck, L. (1988, January). Improving information-retrieval with latent semantic indexing. In Proceedings of the ASIS annual meeting (Vol. 25, pp. 36-40). 143 OLD MARLTON PIKE, MEDFORD, NJ 08055-8750: INFORMATION TODAY INC.
  15. Fleming, S. (2018). Pharma’s Innovation Crisis, Part 1: Why The Experts Can’t Fix It. Forbes Mag.
  16. Frick, J., Guha, R., Peryea, T., & Southall, N. T. (2015). Evaluating disease similarity using latent Dirichlet allocation. BioRxiv, 030593.10.1101/030593
  17. Gilbert, J., Henske, P., & Singh, A. (2003). Rebuilding big pharma’s business model. IN VIVONEW YORK THEN NORWALK-, 21(10), 73-80.
  18. Griffiths, T. L., Jordan, M. I., Tenenbaum, J. B., & Blei, D. M. (2004). Hierarchical topic models and the nested chinese restaurant process. In Advances in neural information processing systems (pp. 17-24).
  19. Groth, P., Loizou, A., Gray, A. J., Goble, C., Harland, L., & Pettifer, S. (2014). API-centric linked data integration: The open PHACTS discovery platform case study. Journal of web semantics, 29, 12-18.10.1016/j.websem.2014.03.003
  20. He, B., Tang, J., Ding, Y., Wang, H., Sun, Y., Shin, J. H., ... & Wild, D. J. (2011). Mining relational paths in integrated biomedical data. PLoS One, 6(12), e27506.10.1371/journal.pone.0027506323220522162991
  21. Hofmann, T. (1999, August). Probabilistic latent semantic indexing. In Proceedings of the 22nd annual international ACM SIGIR conference on Research and development in information retrieval (pp. 50-57).10.1145/312624.312649
  22. King, G., & Lowe, W. (2003). An automated information extraction tool for international conflict data with performance as good as human coders: A rare events evaluation design. International Organization, 617-642.10.1017/S0020818303573064
  23. KPMG International Cooperative (2017). Pharma outlook 2030: From evolution to revolution
  24. Mcauliffe, J. D., & Blei, D. M. (2008). Supervised topic models. In Advances in neural information processing systems (pp. 121-128).
  25. Mimno, D., Wallach, H., Talley, E., Leenders, M., & McCallum, A. (2011, July). Optimizing semantic coherence in topic models. In Proceedings of the 2011 Conference on Empirical Methods in Natural Language Processing (pp. 262-272).
  26. Mo, Y., Kontonatsios, G., & Ananiadou, S. (2015). Supporting systematic reviews using LDA-based document representations. Systematic reviews, 4(1), 172.10.1186/s13643-015-0117-0466200426612232
  27. Newman, D., Lau, J. H., Grieser, K., & Baldwin, T. (2010, June). Automatic evaluation of topic coherence. In Human language technologies: The 2010 annual conference of the North American chapter of the association for computational linguistics (pp. 100-108).
  28. O’Reilly III, C. A., & Tushman, M. L. (2016). Lead and disrupt: How to solve the innovator’s dilemma. Stanford University Press.
  29. Pammolli, F., Magazzini, L., & Riccaboni, M. (2011). The productivity crisis in pharmaceutical R&D. Nature reviews Drug discovery, 10(6), 428-438.10.1038/nrd340521629293
  30. Philippidis, A. (2015). Despite Big Pharma Retreat, R&D Spending Advances: As Biotechs Fill the Research Gap, Developers of All Sizes Scramble to Reduce Risk. Genetic Engineering & Biotechnology News, 35(06), 6-7.10.1089/gen.35.06.03
  31. PricewaterhouseCoopers (PwC) (2009). Pharma 2020: Challenging business models. Which path will you take.
  32. Rizzo, S. J. S., Edgerton, J. R., Hughes, Z. A., & Brandon, N. J. (2013). Future viable models of psychiatry drug discovery in pharma. Journal of biomolecular screening, 18(5), 509-521.10.1177/108705711347587123392517
  33. Siebert, M. (2020). How AI and knowledge graphs can make your research easier. Elsevier Connect. See at the URL: https://www.elsevier.com/connect/how-ai-and-knowledge-graphs-can-make-your-research-easier
  34. Stott, K. (2017). Pharma’s broken business model: An industry on the brink of terminal decline, Endpoint News, 28 November 2017. See at the URL: https://endpts.com/pharmas-broken-business-model-anindustry-on-the-brink-of-terminal-decline.
  35. Van Vlijmen, H. (2016, March). Open PHACTS: Semantic interoperability for drug discovery. In ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY (Vol. 251). 1155 16TH ST, NW, WASHINGTON, DC 20036 USA: AMER CHEMICAL SOC.
  36. Wang, H., Ding, Y., Tang, J., Dong, X., He, B., Qiu, J., & Wild, D. J. (2011). Finding complex biological relationships in recent PubMed articles using Bio-LDA. PloS one, 6(3), e17243.10.1371/journal.pone.0017243306315521448266
  37. Wood, J., Tan, P., Wang, W., & Arnold, C. (2017, April). Source-LDA: Enhancing probabilistic topic models using prior knowledge sources. In 2017 IEEE 33rd International Conference on Data Engineering (ICDE) (pp. 411-422). IEEE.10.1109/ICDE.2017.99
  38. Xiao, C., Zhang, P., Chaowalitwongse, W. A., Hu, J., & Wang, F. (2017, February). Adverse drug reaction prediction with symbolic latent dirichlet allocation. In Proceedings of the thirty-first AAAI conference on artificial intelligence.10.1609/aaai.v31i1.10717
Language: English
Page range: 209 - 222
Published on: May 31, 2021
Published by: Grupul de Econometrie Aplicata
In partnership with: Paradigm Publishing Services
Publication frequency: 1 times per year

© 2021 Alina Popa, published by Grupul de Econometrie Aplicata
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.