Have a personal or library account? Click to login
Classifying non-banking financial institutions based on their financial performance Cover

Classifying non-banking financial institutions based on their financial performance

By: Adrian Costea  
Open Access
|Feb 2020

References

  1. Alhoniemi, E., Hollmen, J., Simula, O., & Vesanto, J. (1999). Process Monitoring and Modeling Using the Self-Organising Map. Integrated Computer-Aided Engineering, 6(1), 3-14.10.3233/ICA-1999-6102
  2. Back, B., Sere, K., & Vanharanta, H. (1996). Data Mining Accounting Numbers Using Self Organising Maps. In J. Alander, T. Honkela, M. Jakobsson (eds.), Proceedings of Finnish Artificial Intelligence Society Conference, 35-47. Vaasa, Finland.
  3. Back, B., Sere, K., & Vanharanta, H. (1998). Managing Complexity in Large Databases Using Self-Organizing Maps. Accounting Management and Information Technologies, 8(4), 191-210.10.1016/S0959-8022(98)00009-5
  4. Cerna, S., Donath, L., Seulean, V., Herbei, M., Bărglăzan, D., Albulescu, C., & Boldea, B. (2008). Financial Stability. Timişoara: West University Publishing House.
  5. Costea, A. (2005). Computational Intelligence Methods for Quantitative Data Mining. TUCS PhD dissertation No. 67, Åbo Akademi University, Turku, Finland.
  6. Costea, A. (2006). The Analysis of the Telecommunications Sector by the Means of Data Mining Techniques. Journal of Applied Quantitative Methods (JAQM), 1(2), 144-150.
  7. Costea, A. (2013). Performance benchmarking of non-banking financial institutions by means of Self-Organising Map algorithm. East-West Journal of Economics and Business, XVI(1), 37-58.
  8. Costea, A., & Bleotu, V. (2012). A new fuzzy clustering algorithm for evaluating the performance of non-banking financial institutions in Romania. Economic Computation and Economic Cybernetics Studies and Research, 46(4), 179-199.
  9. Costea, A., & Eklund, T. (2003). A Two-Level Approach to Making Class Predictions. In RH. Sprague Jr. (ed.), Proceedings of 36th Annual Hawaii International Conference on System Sciences (HICSS 2003) (9 pages). IEEE Computer Society, Hawaii, USA, January 6-9, 2003, Track: Decision Technologies for Management, Minitrack: Intelligent Systems and Soft Computing, ISBN: 0-7695-1874-5.
  10. Eklund, T., Back B., Vanharanta, H., & Visa, A. (2003). Financial Benchmarking Using Self-Organising Maps – Studying the International Pulp and Paper Industry. In J. Wang J. (ed.), Data Mining - Opportunities and Challenges (Chapter 14 – pp. 323-349). Hershey, PA: Idea Group Publishing.
  11. Karlsson, J., Back, B., Vanharanta, H., & Visa, A. (2001). Financial Benchmarking of Telecommunications Companies. TUCS Technical Report, No. 395.
  12. Kohonen, T. (1997). Self-Organising Maps (2nd ed.). Heidelberg: Springer-Verlag.10.1007/978-3-642-97966-8
  13. Kohonen, T., Hynninen, J., Kangas, J., & Laaksonen, J. (1996). SOM_PAK: The Self-Organising Map Program Package. Helsinki University of Technology, Report A31, Otaniemi.
  14. Lehtinen, J. (1996). Financial Ratios in an International Comparison. Validity and Reliability. Acta Wasaensia 49, Vaasa, Finland.
  15. Martín-del-Brío, B., & Serrano Cinca, C. (1993). Self Organizing Neural Networks for the Analysis and Representation of Data: some Financial Cases. Neural Computing & Applications, Springer Verlag (ed.), 1(2), 193-206.10.1007/BF01414948
  16. Moinescu, B., & Costea, A. (2014). Towards an early-warning system of distressed non-banking financial institutions. Economic Computation and Economic Cybernetics Studies and Research, 48(2), 75-90.
  17. Serrano Cinca, C. (1996). Self Organising Neural Networks for Financial Diagnosis. Decision Support Systems, 17, 227-238.10.1016/0167-9236(95)00033-X
  18. Serrano Cinca, C. (1998a). SOM as a tool for Initial Data Analysis (Let Financial Data Speak for Themselves). In G. Deboeck, T. Kohonen (eds.), Visual Intelligence in Finance: withg Self-organising Maps (pp. 4-17). Berlin: Springer Verlag.10.1007/978-1-4471-3913-3_1
  19. Serrano Cinca, C. (1998b). From Financial Information to Strategic Groups - a Self Organising Neural Network Approach. Journal of Forecasting, 17, 415-428.10.1002/(SICI)1099-131X(1998090)17:5/6<415::AID-FOR705>3.0.CO;2-X
  20. Ultsch, A. (1993). Self organized feature maps for monitoring and knowledge aquisition of a chemical process. In S. Gielen, B. Kappen (eds.), Proceedings of the International Conference on Artificial Neural Networks (ICANN93) (pp. 864-867). London: Springer-Verlag.
Language: English
Page range: 185 - 193
Published on: Feb 13, 2020
Published by: Grupul de Econometrie Aplicata
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2020 Adrian Costea, published by Grupul de Econometrie Aplicata
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.