Have a personal or library account? Click to login
Blockchain-Powered Smart System Platform Development: Use Case – Water Meter Readings Cover

Blockchain-Powered Smart System Platform Development: Use Case – Water Meter Readings

Open Access
|Feb 2025

References

  1. Akella, G. K., Wibowo, S., Grandhi, S., & Mubarak, S. (2023). A systematic review of blockchain technology adoption barriers and enablers for smart and sustainable agriculture. Big Data and Cognitive Computing, 7(2), 86.
  2. Soares, B., Ferreira, A., & Veiga, P. M. (2023). The Benefits and Challenges of Blockchain Technology and eHealth Implementation in Estonia-A Literature Review. Applied Medical Informatics, 45(4).
  3. Ezzeddini, L., Ktari, J., Zouaoui, I., Talha, A., Jarray, N. and Frikha, T. (2022). ‘Blockchain for the electronic voting system: case study: student representative vote in Tunisian institute’. In: 2022 15th International Conference on Security of Information and Networks (SIN), pp.01–07.
  4. Raimundo, R. and Rosário, A. (2021). ‘Blockchain system in higher education’. European Journal of Investigation in Health, Psychology and Education, 11(1), pp.276–293.
  5. Shah, F.A.S. et al. (2024). ‘Applications, challenges, and solutions of unmanned aerial vehicles in smart city using blockchain’. PeerJ Computer Science, 10, p.e1776. Available at: https://doi.org/10.7717/peerj-cs.1776.
  6. Mazhar, T. et al. (2023). ‘Analysis of cyber security attacks and its solutions for the smart grid using machine learning and blockchain methods’. Future Internet, 15(2), p.83. Available at: https://doi. org/10.3390/fi15020083.
  7. Khan, A.A. et al. (2022). ‘Healthcare ledger management: a blockchain and machine learning-enabled novel and secure architecture for medical industry’. Human-Centric Computing and Information Sciences, 12, p.55.
  8. Frikha, T., Ktari, J., Zalila, B., Ghorbel, O. and Ben Amor, N. (2023). ‘Integrating blockchain and deep learning for intelligent greenhouse control and traceability’. Alexandria Engineering Journal, 79, pp.259-273.
  9. Mitchell, I., Hara, S. and Sheriff, M. (2019). ‘dAppER: decentralised application for examination review’. In: 2019 IEEE 12th International Conference on Global Security, Safety and Sustainability (ICGS3), pp.1-14.
  10. Ktari, J., Frikha, T., Hamdi, M. and Hamam, H. (2024). ‘Enhancing blockchain consensus with FPGA: accelerating implementation for efficiency’. IEEE Access. doi: 10.1109/ACCESS.2024.3379374
  11. Frikha, T., Ktari, J. and Hamam, H. (2022). ‘Blockchain olive oil supply chain’. In: CRiSIS2022: 17th International Conference on Risks and Security of Internet and Systems, Tunisia.
  12. Kuzlu, M., Pipattanasomporn, M., Gurses, L. and Rahman, S. (2019). ‘Performance analysis of a Hyperledger Fabric blockchain framework: throughput, latency and scalability’. In: 2019 IEEE International Conference on Blockchain (Blockchain), pp.536-540.
  13. Qureshi, A. and Megías Jiménez, D. (2020). ‘Blockchain-based multimedia content protection: review and open challenges’. Applied Sciences, 11(1), p.1. Available at: https://doi.org/10.3390/app11010001.
  14. Abdelmaboud, A. et al. (2022). ‘Blockchain for IoT applications: taxonomy, platforms, recent advances, challenges and future research directions’. Electronics, 11, p.630. Available at: https://doi.org/10.3390/electronics11040630.
  15. Zuo, Y. (2021). ‘Making smart manufacturing smarter – a survey on blockchain technology in Industry 4.0’. Enterprise Information Systems, 15, pp.1323-1353. Available at: https://doi.org/10.1080/17517575.2020.1 856425.
  16. Hasan, M.K. et al. (2022). ‘Blockchain technology on smart grid, energy trading, and big data: security issues, challenges, and recommendations’. Wireless Communications and Mobile Computing, 2022, pp.1-26. Available at: https://doi.org/10.1155/2022/9065768.
  17. Khoshavi, N., Tristani, G. and Sargolzaei, A. (2021). ‘Blockchain applications to improve operation and security of transportation systems: a survey’. Electronics, 10, p.629. Available at: https://doi.org/10.3390/electronics10050629.
  18. Raja Santhi, A. and Muthuswamy, P. (2022). ‘Influence of blockchain technology in manufacturing supply chain and logistics’. Logistics, 6, p.15. Available at: https://doi.org/10.3390/logistics6010015.
  19. Pahontu, B., Arsene, D., Predescu, A. and Mocanu, M. (2020). ‘Application and challenges of blockchain technology for real-time operation in a water distribution system’. In: 2020 24th International Conference on System Theory, Control and Computing (ICSTCC), Sinaia, Romania, pp.739-744. Available at: https://doi.org/10.1109/ICSTCC50638.2020.9259732.
  20. Suresh, M., Muthukumar, U. and Chandapillai, J. (2017). ‘A novel smart water-meter based on IoT and smartphone app for city distribution management’. In: 2017 IEEE Region 10 Symposium (TENSYMP), Cochin, India, pp.1-5. Available at: https://doi.org/10.1109/TENCONSpring.2017.8070088.
  21. Yang, F., Jin, L., Lai, S., Gao, X. and Li, Z. (2019). ‘Fully convolutional sequence recognition network for water meter number reading’. IEEE Access, 7, pp.11679-11687. Available at: https://doi.org/10.1109/ACCESS.2019.2891767.
  22. Naim, A., Aaroud, A., Akodadi, K. and El Hachimi, C. (2021). ‘A fully AI-based system to automate water meter data collection in Morocco country’. Array, 10, p.100056. Available at: https://doi.org/10.1016/j.array.2021.100056.
  23. Bordel, B., Martin, D., Alcarria, R. and Robles, T. (2019). ‘A blockchain-based water control system for the automatic management of irrigation communities’. In: 2019 IEEE International Conference on Consumer Electronics (ICCE), Las Vegas, NV, USA, pp.1-2. Available at: https://doi.org/10.1109/ICCE.2019.8661940.
  24. Enescu, F.M. et al. (2020). ‘Implementing blockchain technology in irrigation systems that integrate photovoltaic energy generation systems’. Sustainability, 12(4), p.1540. Available at: https://doi.org/10.3390/su12041540.
  25. Furones, A.R. and Monzón, J.I.T. (2023). ‘Blockchain applicability in the management of urban water supply and sanitation systems in Spain’. Journal of Environmental Management, 344, p.118480.
  26. Zeng, H., Dhiman, G., Sharma, A., Sharma, A. and Tselykh, A. (2023). ‘An IoT and blockchain-based approach for the smart water management system in agriculture’. Expert Systems, 40(4).
  27. Kim, J. and Ju-Yeong, S. (2020). ‘Comparison of Faster-RCNN, YOLO, and SSD for real-time vehicle type recognition’. In: 2020 IEEE International Conference on Consumer Electronics-Asia (ICCE-Asia), Seoul, Korea (South): IEEE, pp.1-4.
  28. Melek, G.C., Sonmez, E.B. and Albayrak, S. (2019). ‘Object detection in shelf images with YOLO’. In: IEEE EUROCON 2019-18th International Conference on Smart Technologies, Novi Sad, Serbia: IEEE, pp.1-5.
  29. Liu, Y., Liu, J. and Ke, Y. (2020). ‘A detection and recognition system of pointer meters in substations based on computer vision’. Measurement, 152, p.107333.
  30. Li, C. et al. ‘YOLOv6: a single-stage object detection framework for industrial applications’. Available at: http://arxiv.org/abs/2209.02976.
  31. Xu, S. et al. ‘PP-YOLOE: an evolved version of YOLO’. Available at: http://arxiv.org/abs/2203.16250.
  32. Ge, Z. et al. ‘YOLOX: exceeding YOLO series in 2021’. Available at: http://arxiv.org/abs/2107.08430.
  33. Wang, C. and Alexey, A. ‘YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors’. Available at: http://arxiv.org/abs/2207.02696.
  34. Chatrasi, A. L. V. S. S., Batchu, A. G., Kommareddy, L. S., & Garikipati, J. (2023, April). Pedestrian and object detection using image processing by yolov3 and yolov2. In 2023 7th International Conference on Trends in Electronics and Informatics (ICOEI) (pp. 1667-1672). IEEE.
  35. Hong, Q. et al. (2021). ‘Image-based automatic watermeter reading under challenging environments’. Sensors, 21(2), p.434.
  36. Martinelli, F., Francesco, M. and Antonella, S. (2022). ‘Water meter reading for smart grid monitoring’. Sensors, 23(1), p.75.
  37. Zhao, S., Lu, Q., Zhang, C., Ahn, C. K., & Chen, K. (2024). Effective recognition of word-wheel water meter readings for smart urban infrastructure. IEEE Internet of Things Journal.
  38. Salomon, G., Rayson, L. and David, M. (2020). ‘Deep learning for image-based automatic dial meter reading: dataset and baselines’. In: 2020 International Joint Conference on Neural Networks (IJCNN), Glasgow, United Kingdom: IEEE, pp.1-8. Available at: https://ieeexplore.ieee.org/document/9207318/.
  39. Anis, A. et al. (2017). ‘Digital electric meter reading recognition based on horizontal and vertical binary pattern’. In: 2017 3rd International Conference on Electrical Information and Communication Technology (EICT), Khulna: IEEE, pp.1-6. Available at: http://ieeexplore.ieee.org/document/8275241/.
  40. Koščević, K. and Marko, S. (2019). ‘Automatic visual reading of meters using deep learning’. In: Proceedings of the Croatian Conference on Visual Pattern Recognition, pp.1-6. Available at: https://www. fer.unizg.hr/crv/ccvw.2018.0002.
  41. Laroca, R. et al. (2019). ‘Convolutional neural networks for automatic meter reading’. Journal of Electronic Imaging, 28(1), p.1.
  42. Dongmei, S., Shuhua, M. and Chunguo, J. (2007). ‘Study of the automatic reading of watt meter based on image processing technology’. In: 2007 2nd IEEE Conference on Industrial Electronics and Applications, Harbin, China: IEEE, pp.i-i. Available at: http://ieeexplore.ieee.org/document/4318336/.
  43. Chun-Ming, T. and John, K. (2018). ‘Digits detection in watt hour meter’. In: Tenth International Conference on Advanced Computational Intelligence (ICACI).
  44. Ultralytics. ‘yolov8’. GitHub repository. Available at: https://github.com/ultralytics/ultralytics. (accessed on 15 December 2023)
DOI: https://doi.org/10.2478/ias-2024-0015 | Journal eISSN: 1554-1029 | Journal ISSN: 1554-1010
Language: English
Page range: 214 - 232
Published on: Feb 20, 2025
Published by: Cerebration Science Publishing Co., Limited
In partnership with: Paradigm Publishing Services
Publication frequency: 6 issues per year

© 2025 Shams Adhouha Ben Mohamed, Amira Talha, Jalel Ktari, Youssef Ben Taleb, Tarek Frikha, Habib Hamam, published by Cerebration Science Publishing Co., Limited
This work is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 License.