References
- Akella, G. K., Wibowo, S., Grandhi, S., & Mubarak, S. (2023). A systematic review of blockchain technology adoption barriers and enablers for smart and sustainable agriculture. Big Data and Cognitive Computing, 7(2), 86.
- Soares, B., Ferreira, A., & Veiga, P. M. (2023). The Benefits and Challenges of Blockchain Technology and eHealth Implementation in Estonia-A Literature Review. Applied Medical Informatics, 45(4).
- Ezzeddini, L., Ktari, J., Zouaoui, I., Talha, A., Jarray, N. and Frikha, T. (2022). ‘Blockchain for the electronic voting system: case study: student representative vote in Tunisian institute’. In: 2022 15th International Conference on Security of Information and Networks (SIN), pp.01–07.
- Raimundo, R. and Rosário, A. (2021). ‘Blockchain system in higher education’. European Journal of Investigation in Health, Psychology and Education, 11(1), pp.276–293.
- Shah, F.A.S. et al. (2024). ‘Applications, challenges, and solutions of unmanned aerial vehicles in smart city using blockchain’. PeerJ Computer Science, 10, p.e1776. Available at: https://doi.org/10.7717/peerj-cs.1776.
- Mazhar, T. et al. (2023). ‘Analysis of cyber security attacks and its solutions for the smart grid using machine learning and blockchain methods’. Future Internet, 15(2), p.83. Available at: https://doi. org/10.3390/fi15020083.
- Khan, A.A. et al. (2022). ‘Healthcare ledger management: a blockchain and machine learning-enabled novel and secure architecture for medical industry’. Human-Centric Computing and Information Sciences, 12, p.55.
- Frikha, T., Ktari, J., Zalila, B., Ghorbel, O. and Ben Amor, N. (2023). ‘Integrating blockchain and deep learning for intelligent greenhouse control and traceability’. Alexandria Engineering Journal, 79, pp.259-273.
- Mitchell, I., Hara, S. and Sheriff, M. (2019). ‘dAppER: decentralised application for examination review’. In: 2019 IEEE 12th International Conference on Global Security, Safety and Sustainability (ICGS3), pp.1-14.
- Ktari, J., Frikha, T., Hamdi, M. and Hamam, H. (2024). ‘Enhancing blockchain consensus with FPGA: accelerating implementation for efficiency’. IEEE Access. doi: 10.1109/ACCESS.2024.3379374
- Frikha, T., Ktari, J. and Hamam, H. (2022). ‘Blockchain olive oil supply chain’. In: CRiSIS2022: 17th International Conference on Risks and Security of Internet and Systems, Tunisia.
- Kuzlu, M., Pipattanasomporn, M., Gurses, L. and Rahman, S. (2019). ‘Performance analysis of a Hyperledger Fabric blockchain framework: throughput, latency and scalability’. In: 2019 IEEE International Conference on Blockchain (Blockchain), pp.536-540.
- Qureshi, A. and Megías Jiménez, D. (2020). ‘Blockchain-based multimedia content protection: review and open challenges’. Applied Sciences, 11(1), p.1. Available at: https://doi.org/10.3390/app11010001.
- Abdelmaboud, A. et al. (2022). ‘Blockchain for IoT applications: taxonomy, platforms, recent advances, challenges and future research directions’. Electronics, 11, p.630. Available at: https://doi.org/10.3390/electronics11040630.
- Zuo, Y. (2021). ‘Making smart manufacturing smarter – a survey on blockchain technology in Industry 4.0’. Enterprise Information Systems, 15, pp.1323-1353. Available at: https://doi.org/10.1080/17517575.2020.1 856425.
- Hasan, M.K. et al. (2022). ‘Blockchain technology on smart grid, energy trading, and big data: security issues, challenges, and recommendations’. Wireless Communications and Mobile Computing, 2022, pp.1-26. Available at: https://doi.org/10.1155/2022/9065768.
- Khoshavi, N., Tristani, G. and Sargolzaei, A. (2021). ‘Blockchain applications to improve operation and security of transportation systems: a survey’. Electronics, 10, p.629. Available at: https://doi.org/10.3390/electronics10050629.
- Raja Santhi, A. and Muthuswamy, P. (2022). ‘Influence of blockchain technology in manufacturing supply chain and logistics’. Logistics, 6, p.15. Available at: https://doi.org/10.3390/logistics6010015.
- Pahontu, B., Arsene, D., Predescu, A. and Mocanu, M. (2020). ‘Application and challenges of blockchain technology for real-time operation in a water distribution system’. In: 2020 24th International Conference on System Theory, Control and Computing (ICSTCC), Sinaia, Romania, pp.739-744. Available at: https://doi.org/10.1109/ICSTCC50638.2020.9259732.
- Suresh, M., Muthukumar, U. and Chandapillai, J. (2017). ‘A novel smart water-meter based on IoT and smartphone app for city distribution management’. In: 2017 IEEE Region 10 Symposium (TENSYMP), Cochin, India, pp.1-5. Available at: https://doi.org/10.1109/TENCONSpring.2017.8070088.
- Yang, F., Jin, L., Lai, S., Gao, X. and Li, Z. (2019). ‘Fully convolutional sequence recognition network for water meter number reading’. IEEE Access, 7, pp.11679-11687. Available at: https://doi.org/10.1109/ACCESS.2019.2891767.
- Naim, A., Aaroud, A., Akodadi, K. and El Hachimi, C. (2021). ‘A fully AI-based system to automate water meter data collection in Morocco country’. Array, 10, p.100056. Available at: https://doi.org/10.1016/j.array.2021.100056.
- Bordel, B., Martin, D., Alcarria, R. and Robles, T. (2019). ‘A blockchain-based water control system for the automatic management of irrigation communities’. In: 2019 IEEE International Conference on Consumer Electronics (ICCE), Las Vegas, NV, USA, pp.1-2. Available at: https://doi.org/10.1109/ICCE.2019.8661940.
- Enescu, F.M. et al. (2020). ‘Implementing blockchain technology in irrigation systems that integrate photovoltaic energy generation systems’. Sustainability, 12(4), p.1540. Available at: https://doi.org/10.3390/su12041540.
- Furones, A.R. and Monzón, J.I.T. (2023). ‘Blockchain applicability in the management of urban water supply and sanitation systems in Spain’. Journal of Environmental Management, 344, p.118480.
- Zeng, H., Dhiman, G., Sharma, A., Sharma, A. and Tselykh, A. (2023). ‘An IoT and blockchain-based approach for the smart water management system in agriculture’. Expert Systems, 40(4).
- Kim, J. and Ju-Yeong, S. (2020). ‘Comparison of Faster-RCNN, YOLO, and SSD for real-time vehicle type recognition’. In: 2020 IEEE International Conference on Consumer Electronics-Asia (ICCE-Asia), Seoul, Korea (South): IEEE, pp.1-4.
- Melek, G.C., Sonmez, E.B. and Albayrak, S. (2019). ‘Object detection in shelf images with YOLO’. In: IEEE EUROCON 2019-18th International Conference on Smart Technologies, Novi Sad, Serbia: IEEE, pp.1-5.
- Liu, Y., Liu, J. and Ke, Y. (2020). ‘A detection and recognition system of pointer meters in substations based on computer vision’. Measurement, 152, p.107333.
- Li, C. et al. ‘YOLOv6: a single-stage object detection framework for industrial applications’. Available at: http://arxiv.org/abs/2209.02976.
- Xu, S. et al. ‘PP-YOLOE: an evolved version of YOLO’. Available at: http://arxiv.org/abs/2203.16250.
- Ge, Z. et al. ‘YOLOX: exceeding YOLO series in 2021’. Available at: http://arxiv.org/abs/2107.08430.
- Wang, C. and Alexey, A. ‘YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors’. Available at: http://arxiv.org/abs/2207.02696.
- Chatrasi, A. L. V. S. S., Batchu, A. G., Kommareddy, L. S., & Garikipati, J. (2023, April). Pedestrian and object detection using image processing by yolov3 and yolov2. In 2023 7th International Conference on Trends in Electronics and Informatics (ICOEI) (pp. 1667-1672). IEEE.
- Hong, Q. et al. (2021). ‘Image-based automatic watermeter reading under challenging environments’. Sensors, 21(2), p.434.
- Martinelli, F., Francesco, M. and Antonella, S. (2022). ‘Water meter reading for smart grid monitoring’. Sensors, 23(1), p.75.
- Zhao, S., Lu, Q., Zhang, C., Ahn, C. K., & Chen, K. (2024). Effective recognition of word-wheel water meter readings for smart urban infrastructure. IEEE Internet of Things Journal.
- Salomon, G., Rayson, L. and David, M. (2020). ‘Deep learning for image-based automatic dial meter reading: dataset and baselines’. In: 2020 International Joint Conference on Neural Networks (IJCNN), Glasgow, United Kingdom: IEEE, pp.1-8. Available at: https://ieeexplore.ieee.org/document/9207318/.
- Anis, A. et al. (2017). ‘Digital electric meter reading recognition based on horizontal and vertical binary pattern’. In: 2017 3rd International Conference on Electrical Information and Communication Technology (EICT), Khulna: IEEE, pp.1-6. Available at: http://ieeexplore.ieee.org/document/8275241/.
- Koščević, K. and Marko, S. (2019). ‘Automatic visual reading of meters using deep learning’. In: Proceedings of the Croatian Conference on Visual Pattern Recognition, pp.1-6. Available at: https://www. fer.unizg.hr/crv/ccvw.2018.0002.
- Laroca, R. et al. (2019). ‘Convolutional neural networks for automatic meter reading’. Journal of Electronic Imaging, 28(1), p.1.
- Dongmei, S., Shuhua, M. and Chunguo, J. (2007). ‘Study of the automatic reading of watt meter based on image processing technology’. In: 2007 2nd IEEE Conference on Industrial Electronics and Applications, Harbin, China: IEEE, pp.i-i. Available at: http://ieeexplore.ieee.org/document/4318336/.
- Chun-Ming, T. and John, K. (2018). ‘Digits detection in watt hour meter’. In: Tenth International Conference on Advanced Computational Intelligence (ICACI).
- Ultralytics. ‘yolov8’. GitHub repository. Available at: https://github.com/ultralytics/ultralytics. (accessed on 15 December 2023)