References
- Khalid, U., Asim, M., Baker, T., Hung, P.C.K., Tariq, M.A. and Rafferty, L. (2020). ‘A decentralized lightweight blockchain-based authentication mechanism for IoT systems’. Cluster Computing, 23(3), pp.2067-2087.
- Nakamoto, S. (2008). ‘Re: bitcoin P2P e-cash paper’. Cryptography Mailing List.
- Shen, H., Zhang, M., Wang, H., Guo, F. and Susilo, W. (2021). ‘A cloud-aided privacy-preserving multi-dimensional data comparison protocol’. Information Sciences, 545, pp.739-752.
- Yang, Q., Liu, Y., Chen, T. and Tong, Y. (2019). ‘Federated machine learning: concept and applications’. ACM Transactions on Intelligent Systems and Technology, 10(2), pp.1-19.
- Wang, P., Wang, L., Leung, H. and Zhang, G. (2020). ‘Super-resolution mapping based on spatial– spectral correlation for spectral imagery’. IEEE Transactions on Geoscience and Remote Sensing, 59(3), pp.2256-2268.
- Zhou, W., Lv, Y., Lei, J. and Yu, L. (2019). ‘Global and local-contrast guides content-aware fusion for RGB-D saliency prediction’. IEEE Transactions on Systems, Man, and Cybernetics: Systems.
- Konecný, J. et al. (2016). ‘Federated learning: strategies for improving communication efficiency’. CoRR, abs/1610.05492. Available at: http://arxiv.org/abs/1610.05492.
- Zhou, S. et al. (2019). ‘PIRATE: a blockchain-based secure framework of distributed machine learning in 5G networks’. CoRR, abs/1912.07860. Available at: http://arxiv.org/abs/1912.07860.
- Khan, L.U., Saad, W., Han, Z., Hossain, E. and Hong, C.S. (2021). ‘Federated learning for internet of things: recent advances, taxonomy, and open challenges’. IEEE Communications Surveys & Tutorials.
- Chen, X. (2018). ‘When machine learning meets blockchain: a decentralized, privacy-preserving and secure design’. In: Proceedings of the 2018 IEEE International Conference on Big Data (Big Data).
- Hegedüs, I., Danner, G. and Jelasity, M. (2019). ‘Gossip learning as a decentralized alternative to federated learning’. In: Proceedings of the 2019 International Conference on Distributed Applications and Interoperable Systems (DAIS), 19th IFIP WG 6.1.
- Li, T., Sahu, A.K., Talwalkar, A. and Smith, V. (2020). ‘Federated learning: challenges, methods, and future directions’. IEEE Signal Processing Magazine, 37.
- Kairouz, P., McMahan, H.B. and Avent, B. (2019). ‘Advances and open problems in federated learning’. [Online].
- Gai, A., Wu, Y., Zhu, L., Zhang, Z. and Qiu, M. (2020). ‘Differential privacy-based blockchain for industrial internet-of-things’. IEEE Transactions on Industrial Informatics.
- Kim, H., Park, J., Bennis, M. and Kim, S. (2020). ‘Blockchained on-device federated learning’. IEEE Communications Letters.
- Liu, Y., Peng, J., Kang, J., Iliyasu, A.M., Niyato, D. and ElLatif, A.A.A. (2020). ‘A secure federated learning framework for 5G networks’. IEEE Wireless Communications.
- Ma, L., Pei, Q., Qu, Y., Fan, K. and Lai, X. (2019). ‘Decentralized privacy-preserving reputation management for mobile crowdsensing’. In: International Conference on Security and Privacy in Communication Systems. Springer.
- Jiao, Y., Wang, P., Niyato, D. and Suankaewmanee, K. (2019). ‘Auction mechanisms in cloud/fog computing resource allocation for public blockchain networks’. IEEE Transactions on Parallel and Distributed Systems.
- Konecný, J., McMahan, H.B., Ramage, D. and Richt, P. (2016). ‘Federated optimization: distributed machine learning for on-device intelligence’. CoRR.
- Wang, X., Han, Y., Wang, C., Zhao, Q., Chen, X. and Chen, M. (2019). ‘In-edge AI: intelligentizing mobile edge computing, caching and communication by federated learning’. IEEE Network.
- Smith, V., Chiang, C., Sanjabi, M. and Talwalkar, A.S. (2017). ‘Federated multi-task learning’. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems.
- Konecný, J., McMahan, H.B., Yu, F.X., Richt, P., Suresh, A.T. and Bacon, D. (2016). ‘Federated learning: strategies for improving communication efficiency’. CoRR.
- Nishio, T. and Yonetani, R. (2019). ‘Client selection for federated learning with heterogeneous resources in mobile edge’. In: 2019 IEEE International Conference on Communications.
- Lu, Y., Huang, X., Dai, Y., Maharjan, S. and Zhang, Y. (2019). ‘Blockchain and federated learning for privacy-preserved data sharing in industrial IoT’. IEEE Transactions on Industrial Informatics.
- Yoon, J. (2019). ‘Democratic senators introduce the Consumer Online Privacy Rights Act’. [Internet].
- Aktypi, A., Nurse, J.R.C. and Goldsmith, M. (2017). ‘Unwinding Ariadne’s identity thread: privacy risks with fitness trackers and online social networks’. In: International Workshop on Multimedia Privacy and Security at ACM Conference on Computer and Communications Security.
- Mehmood, A., Natgunanathan, I., Xiang, Y., Hua, G. and Guo, S. (2016). ‘Protection of big data privacy’. IEEE Access, 4.
- Saglam, B.R. and Nurse, J.R.C. (2020). ‘Is your chatbot GDPR compliant? Open issues in agent design’. In: International Conference on Conversational User Interfaces. ACM.
- Ramachandran, G.S., Radhakrishnan, R. and Krishnamachari, B. (2018). ‘Towards a decentralized data marketplace for smart cities’. In: International Smart Cities Conference. IEEE.
- Lönnfält, I. and Sandqvist, J. (2018). ‘Blockchains, the new fashion in supply chains? The compatibility of blockchain configuration in supply chain management in the fast fashion industry’. (Master’s thesis), Gothenburg University.
- Rumbold, J.M. and Pierscionek, B.K. (2018). ‘What are data? A categorization of the data sensitivity spectrum’. Big Data Research, 12.
- Purtova, N. (2018). ‘The law of everything: broad concept of personal data and future of EU data protection law’. Innov Technology.
- Singh, S. and Verma, S. (2023). ‘Federated learning for GDPR’. In: The 18th International Conference on Information Assurance and Security (IAS). Springer, December 13-15, 2023.
- Verma, S.B. and Shashi, B.V. (2020). ‘Data transmission in BPEL (Business Process Execution Language)’. ADCAIJ: Advances in Distributed Computing and Artificial Intelligence Journal, 9(3), pp.105-117.
- Verma, S.B., Brijesh, P. and Gupta, B.K. (2022). ‘Containerization and its architectures: a study’. ADCAIJ: Advances in Distributed Computing and Artificial Intelligence Journal, 11(4), pp.395-409.