Have a personal or library account? Click to login
Decentralization and Federated Approach for Personal Data Protection and Privacy Control Cover

Decentralization and Federated Approach for Personal Data Protection and Privacy Control

Open Access
|Feb 2025

References

  1. Khalid, U., Asim, M., Baker, T., Hung, P.C.K., Tariq, M.A. and Rafferty, L. (2020). ‘A decentralized lightweight blockchain-based authentication mechanism for IoT systems’. Cluster Computing, 23(3), pp.2067-2087.
  2. Nakamoto, S. (2008). ‘Re: bitcoin P2P e-cash paper’. Cryptography Mailing List.
  3. Shen, H., Zhang, M., Wang, H., Guo, F. and Susilo, W. (2021). ‘A cloud-aided privacy-preserving multi-dimensional data comparison protocol’. Information Sciences, 545, pp.739-752.
  4. Yang, Q., Liu, Y., Chen, T. and Tong, Y. (2019). ‘Federated machine learning: concept and applications’. ACM Transactions on Intelligent Systems and Technology, 10(2), pp.1-19.
  5. Wang, P., Wang, L., Leung, H. and Zhang, G. (2020). ‘Super-resolution mapping based on spatial– spectral correlation for spectral imagery’. IEEE Transactions on Geoscience and Remote Sensing, 59(3), pp.2256-2268.
  6. Zhou, W., Lv, Y., Lei, J. and Yu, L. (2019). ‘Global and local-contrast guides content-aware fusion for RGB-D saliency prediction’. IEEE Transactions on Systems, Man, and Cybernetics: Systems.
  7. Konecný, J. et al. (2016). ‘Federated learning: strategies for improving communication efficiency’. CoRR, abs/1610.05492. Available at: http://arxiv.org/abs/1610.05492.
  8. Zhou, S. et al. (2019). ‘PIRATE: a blockchain-based secure framework of distributed machine learning in 5G networks’. CoRR, abs/1912.07860. Available at: http://arxiv.org/abs/1912.07860.
  9. Khan, L.U., Saad, W., Han, Z., Hossain, E. and Hong, C.S. (2021). ‘Federated learning for internet of things: recent advances, taxonomy, and open challenges’. IEEE Communications Surveys & Tutorials.
  10. Chen, X. (2018). ‘When machine learning meets blockchain: a decentralized, privacy-preserving and secure design’. In: Proceedings of the 2018 IEEE International Conference on Big Data (Big Data).
  11. Hegedüs, I., Danner, G. and Jelasity, M. (2019). ‘Gossip learning as a decentralized alternative to federated learning’. In: Proceedings of the 2019 International Conference on Distributed Applications and Interoperable Systems (DAIS), 19th IFIP WG 6.1.
  12. Li, T., Sahu, A.K., Talwalkar, A. and Smith, V. (2020). ‘Federated learning: challenges, methods, and future directions’. IEEE Signal Processing Magazine, 37.
  13. Kairouz, P., McMahan, H.B. and Avent, B. (2019). ‘Advances and open problems in federated learning’. [Online].
  14. Gai, A., Wu, Y., Zhu, L., Zhang, Z. and Qiu, M. (2020). ‘Differential privacy-based blockchain for industrial internet-of-things’. IEEE Transactions on Industrial Informatics.
  15. Kim, H., Park, J., Bennis, M. and Kim, S. (2020). ‘Blockchained on-device federated learning’. IEEE Communications Letters.
  16. Liu, Y., Peng, J., Kang, J., Iliyasu, A.M., Niyato, D. and ElLatif, A.A.A. (2020). ‘A secure federated learning framework for 5G networks’. IEEE Wireless Communications.
  17. Ma, L., Pei, Q., Qu, Y., Fan, K. and Lai, X. (2019). ‘Decentralized privacy-preserving reputation management for mobile crowdsensing’. In: International Conference on Security and Privacy in Communication Systems. Springer.
  18. Jiao, Y., Wang, P., Niyato, D. and Suankaewmanee, K. (2019). ‘Auction mechanisms in cloud/fog computing resource allocation for public blockchain networks’. IEEE Transactions on Parallel and Distributed Systems.
  19. Konecný, J., McMahan, H.B., Ramage, D. and Richt, P. (2016). ‘Federated optimization: distributed machine learning for on-device intelligence’. CoRR.
  20. Wang, X., Han, Y., Wang, C., Zhao, Q., Chen, X. and Chen, M. (2019). ‘In-edge AI: intelligentizing mobile edge computing, caching and communication by federated learning’. IEEE Network.
  21. Smith, V., Chiang, C., Sanjabi, M. and Talwalkar, A.S. (2017). ‘Federated multi-task learning’. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems.
  22. Konecný, J., McMahan, H.B., Yu, F.X., Richt, P., Suresh, A.T. and Bacon, D. (2016). ‘Federated learning: strategies for improving communication efficiency’. CoRR.
  23. Nishio, T. and Yonetani, R. (2019). ‘Client selection for federated learning with heterogeneous resources in mobile edge’. In: 2019 IEEE International Conference on Communications.
  24. Lu, Y., Huang, X., Dai, Y., Maharjan, S. and Zhang, Y. (2019). ‘Blockchain and federated learning for privacy-preserved data sharing in industrial IoT’. IEEE Transactions on Industrial Informatics.
  25. Yoon, J. (2019). ‘Democratic senators introduce the Consumer Online Privacy Rights Act’. [Internet].
  26. Aktypi, A., Nurse, J.R.C. and Goldsmith, M. (2017). ‘Unwinding Ariadne’s identity thread: privacy risks with fitness trackers and online social networks’. In: International Workshop on Multimedia Privacy and Security at ACM Conference on Computer and Communications Security.
  27. Mehmood, A., Natgunanathan, I., Xiang, Y., Hua, G. and Guo, S. (2016). ‘Protection of big data privacy’. IEEE Access, 4.
  28. Saglam, B.R. and Nurse, J.R.C. (2020). ‘Is your chatbot GDPR compliant? Open issues in agent design’. In: International Conference on Conversational User Interfaces. ACM.
  29. Ramachandran, G.S., Radhakrishnan, R. and Krishnamachari, B. (2018). ‘Towards a decentralized data marketplace for smart cities’. In: International Smart Cities Conference. IEEE.
  30. Lönnfält, I. and Sandqvist, J. (2018). ‘Blockchains, the new fashion in supply chains? The compatibility of blockchain configuration in supply chain management in the fast fashion industry’. (Master’s thesis), Gothenburg University.
  31. Rumbold, J.M. and Pierscionek, B.K. (2018). ‘What are data? A categorization of the data sensitivity spectrum’. Big Data Research, 12.
  32. Purtova, N. (2018). ‘The law of everything: broad concept of personal data and future of EU data protection law’. Innov Technology.
  33. Singh, S. and Verma, S. (2023). ‘Federated learning for GDPR’. In: The 18th International Conference on Information Assurance and Security (IAS). Springer, December 13-15, 2023.
  34. Verma, S.B. and Shashi, B.V. (2020). ‘Data transmission in BPEL (Business Process Execution Language)’. ADCAIJ: Advances in Distributed Computing and Artificial Intelligence Journal, 9(3), pp.105-117.
  35. Verma, S.B., Brijesh, P. and Gupta, B.K. (2022). ‘Containerization and its architectures: a study’. ADCAIJ: Advances in Distributed Computing and Artificial Intelligence Journal, 11(4), pp.395-409.
DOI: https://doi.org/10.2478/ias-2024-0014 | Journal eISSN: 1554-1029 | Journal ISSN: 1554-1010
Language: English
Page range: 197 - 213
Published on: Feb 20, 2025
Published by: Cerebration Science Publishing Co., Limited
In partnership with: Paradigm Publishing Services
Publication frequency: 6 issues per year

© 2025 Suyogita Singh, Satya Bhushan Verma, Bineet Kumar Gupta, Anamika Agrawal, published by Cerebration Science Publishing Co., Limited
This work is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 License.