References
- Sandosh, S., Bala, A., Kodipyaka, N., Swetha, B. and Alajangi, S. (2023) ‘Review on Clustering and Classification techniques in Intrusion Detection Systems’. International Journal of Advanced Research in Science and Communication Technology, 3: 1.
- Liao, H.J., Lin, C.H.R., Lin, Y.C and Tung, K.Y. (2013). ‘Intrusion detection system: A comprehensive review’. Journal of Network and Computer Applications, 36: 1, 16–24.
- Vigna, G. and Kemmerer, R.A. (1999). ‘NetSTAT: A network-based intrusion detection system’. Journal of computer security, 7: 1, 37–71.
- Hoque, M.S., Mukit, M.A. and Bikas, M.A.N. (2012). ‘An implementation of intrusion detection system using genetic algorithm’. arXiv preprint arXiv, 1204.1336.
- Biermann, E., Cloete, E. and Venter, L.M. (2001). ‘A comparison of intrusion detection systems’. Computers & Security, 20: 8, 676–683.
- Javaid, A., Niyaz, Q., Sun, W. and Alam, M. (2016, May). ‘A deep learning approach for network intrusion detection system’, in Proceedings of the 9th EAI International Conference on Bio-inspired Information and Communications Technologies (formerly BIONETIC), pp. 21–26.
- Vinayakumar, R., Alazab, M., Soman, K.P., Poornachandran, P., Al-Nemrat, A. and Venkatraman, S. (2019). ‘Deep learning approach for intelligent intrusion detection system’. Ieee Access, 7, 41525–41550.
- Wagh, S.K., Pachghare, V.K. and Kolhe, S.R. (2013). ‘Survey on intrusion detection system using machine learning techniques’. International Journal of Computer Applications, 78: 16, 30–37.
- Haq, N.F., Onik, A.R., Hridoy, M.A.K., Rafni, M., Shah, F.M. and Farid, D.M. (2015). ‘Application of machine learning approaches in intrusion detection system: A survey’. IJARAI-International Journal of Advanced Research in Artificial Intelligence, 4: 3, 9–18.
- Ashoor, A.S. and Gore, S. (2011). ‘Importance of intrusion detection system (IDS)’. International Journal of Scientific and Engineering Research, 2: 1, 1–4.