Have a personal or library account? Click to login
Unraveling the role of endophytic fungi in barley salt-stress tolerance Cover

Unraveling the role of endophytic fungi in barley salt-stress tolerance

Open Access
|Jan 2023

References

  1. Aghilia, F., Jansab, J., Khoshgoftarmanesh, A.H., Afyunic, M., Schulind, R., Frossarda, E. and Gampera, H.A. 2014. Wheat plants invest more in mycorrhizae and receive more benefits from them under adverse than favorable soil conditions. Applied Soil Ecology, 84: 93-111.10.1016/j.apsoil.2014.06.013
  2. Ahmad, P., Abeer, H., Elsayed, F.A.A., Alqarawi, A.A., Riffat, J., Dilfuza, E. and Salih, G. 2015. Role of Trichoderma harzianum in mitigating NaCl stress in Indian mustard (Brassica juncea L.) through antioxidative defense system. Frontiers in Plant Science, 6: 868.10.3389/fpls.2015.00868
  3. Akagi, A., Jiang, C.J. and Takatsuji, H. 2015. Magna-porthe oryzae Inoculation of Rice Seedlings by Spraying with a Spore Suspension. Bio-Protocol, 11: 1-5.10.21769/BioProtoc.1486
  4. Albacete, A., Ghanem, M.E., Martínez-Andújar, C., Acosta, M., Sánchez-Bravo, J., Martínez, V., Lutts, S., Dodd, I.C. and Pérez-Alfocea F. 2008. Hormonal changes in relation to biomass partitioning and shoot growth. Impairment in salinized tomato (Solanum lycopersicum L.) plants. Journal of Experimental Botany 59 (15): 4119-4131.10.1093/jxb/ern251263902519036841
  5. Baenziger, M., Setimela, P.S., Hodson, D. and Vivek, B. 2006. Breeding for improved abiotic stress tolerance in maize adapted to southern Africa. Agricultural Water Management, 80: 212-224.10.1016/j.agwat.2005.07.014
  6. Ban, Y., XU, Z., Yang, Y., Zhang, H., Chen, H., and Tang, M. 2017. Effect of dark septate endophytic fungus Gaeumannomyces cylindrosporus on plant growth, photosynthesis and Pb tolerance of maize (Zea mays L.). Pedosphere, 27: 283–292.10.1016/S1002-0160(17)60316-3
  7. Bouzid, N. 2010. Étude de la résistance d’Atriplex halimus subsp. schweinfurthii aux sels solubles. Acta Botanica Gallica, 157 (4): 787-791.10.1080/12538078.2010.10516247
  8. Chapman, H.D. and Pratt, P.F. 1961. Methods of Analysis for Soils, Plants and Water. Univ. California, Public Division of Agricultural Sciences, Berkeley, CA, USA. 150-179.
  9. Chorfi, A. 2009. Contribution à l’étude de la résistance à la salinité chez une variété de blé dur algérien (Triticum durum Desf.) Var. mohamed ben bachir. Sciences and Technologie, 29: 41-44.
  10. Dardanelli, M.S., Manyani, H., Gonzalez-Barroso, S., Rodriguez-Carvajal, M.A., Gil-Serrano A.M., Espuny, M.R., López-Baena, F.J., Bellogín, R.A., Megías, M. and Ollero, F.J. 2009. Effect of the presence of the plant growth promoting rhizobacterium (PGPR) Chryseobacterium balustinum Aur9 and salt stress in the pattern of flavonoids exuded by soybean roots. Plant Soil, 328: 483-493.10.1007/s11104-009-0127-6
  11. El Goumi, Y., Fakiri, M., Lamsaouri, O. and Benchekroun, M. 2014. Salt stress effect on seed germination and some physiological traits in three Moroccan barley (Hordeum vulgare L.) cultivars. Journal of Materials and Environmental Science, 5: 625-632.
  12. Ghorbani, A., Omran, V.O.G., Razavi, S.M., Pirdashti, H. and Ranjbar, M. 2018. Piriformospora indica inoculation alleviates the adverse effect of NaCl stress on growth, gas exchange and chlorophyll fluorescence in tomato (Solanum lycopersicum L.). Plant Biology, 20: 729-736.10.1111/plb.12717
  13. Ghorbani, A., Omran, V.O.G., Razavi, S.M., Pirdashti, H. and Ranjbar, M. 2019. Piriformospora indica confers salinity tolerance on tomato (Lycopersicon esculentum Mill.) through amelioration of nutrient accumulation, K+/Na+ homeostasis and water status. Plant Cell Reports. Springer-Verlag GmbH Germany, part of Springer Nature 2019. doi.org/10.1007/s00299-019-02434-w.10.1007/s00299-019-02434-w31152194
  14. Gill, S.S., Gill, R., Trivedi, D.K., Anjum, N.A., Sharma, K.K., Ansari, M.W., Ansari, A.A., Johri, A.K., Prasad, R., Pereira, E., Varma, A. and Tuteja, N. 2016. Piriformospora indica: potential and significance in plant stress tolerance. Frontiers in Microbiology, 7: 332.10.3389/fmicb.2016.00332
  15. Gupta, B. and Huang, B. 2014. Mechanism of salinity tolerance in plants: physiological, biochemical, and molecular characterization. International Journal of Genomics, 2014:701596. https://doi.org/10.1155/2014/701596.10.1155/2014/701596399647724804192
  16. Hamayun, M., Khan, S.A., Khan, A.L., Tang, D.S., Hussain, J., Ahmad, B., Anwar, Y. and Lee, I.J. 2010. Growth promotion of cucumber by pure cultures of gibberellin-producing Phoma sp. GAH7. World Journal of Microbiology and Biotechnology, 26: 889-894.10.1007/s11274-009-0248-3
  17. Haouala, F., Ferjani, H. and El Hadj, S. 2007. Effet de la salinité sur la répartition des cations (Na+, K+ et Ca+2) et du chlore (Cl-) dans les parties aériennes et les racines de ray-grass anglais et du chiendent. Biotechnology, Agronomy, Society and Environment, 11 (3): 235-244.
  18. Hasan, H.A.H. 2002. Gibberellin and auxin production by plant root-fungi and their biosynthesis under salinity-calcium interaction. Rostlinná výroba., 48: 101-106.10.17221/4207-PSE
  19. Hashem, A., Abd-allah, E.F., Alqarawi, A. A., Al-Huqail, A.A. and Egamberdieva, D. 2014. Alleviation of abiotic salt stress in Ochradenus baccatus (Del.) by Trichoderma hamatum (Bonord.) Bainier. Journal of Plant Interactions, 9: 857-868.10.1080/17429145.2014.983568
  20. Hu, L., Chen, L., Liu, L., Lou, Y., Amombo, E. and Fu, J. 2014. Metabolic acclimation of source and sink tissues to salinity stress in bermudagrass (Cynodon dactylon). Plant Physiology, 155: 166-179.10.1111/ppl.12312
  21. I.N.S.I.D. 2008. Etat d’avancement du projet (ALG/5/022) de coopération technique avec l’AIEA. Les techniques nucléaires pour l’utilisation durable des terres salines et des eaux saumâtres pour la production agricole. 48p.
  22. Jogawat, A., Saha, S., Bakshi, M., Dayaman, V., Kumar, M., Dua, M., Varma, A., Oelmüller, R., Tuteja, N. and Johri, A.K. 2013. Piriformospora indica rescues growth diminution of rice seedlings during high salt stress. Plant Signaling and Behaviour, 8: e26891.10.4161/psb.26891
  23. Joseph, E.A., Radhakrishnan, V.V. and Mohanan, K.V. 2015. A Study on the Accumulation of Pro-line- An Osmoprotectant Amino Acid under Salt Stress in Some Native Rice Cultivars of North Kerala. India Universal Journal of Agricultural Research, 3 (1): 15-22.10.13189/ujar.2015.030104
  24. Kara, K. and Brinis, L. 2012. Réponse Physiologique au Stress Hydrique de Variétés de Blé Tendre (Triticum Aestivum L.) Cultivées en Algérie. Euopean Journal of Scientific Research, 81: 524-532.
  25. Kouadria, R., Bouzouina, M., Azzouz, R. and Lotmani, B. 2018. Salinity stress resistance of durum wheat (Triticum durum) enhanced by fungi. International Journal of Biosciences, 12: 70-77.
  26. Kouadria, R., Bouzouina, M. and Lotmani, B. 2019. Endophytic fungi contribution in adverse factors tolerance of cultivated species: isolation of endophytic fungi and study of their contribution to salinity or pollutants tolerance (in French). PhD dissertation. 159p.
  27. Kouadria, R., Bouzouina, M. and Lotmani, B. 2020. Induction of growth and osmoregulation in salt stressed barley by the endophytic fungus Chaetomium coarctatum. Tunisian Journal of Plant Protection, 15: 19-27.
  28. Leitão, A.L. and Enguita, F.J. 2016. Gibberellins in Penicillium strains: Challenges for endophyteplanthost interactions under salinity stress. Microbiological Research, 183: 8-18.10.1016/j.micres.2015.11.004
  29. Li, X., Han, S., Wang, G., Liu, X., Amombo, E., Xie, Y. and Fu, J. 2017. The Fungus Aspergillus aculeatus Enhances Salt-Stress Tolerance, Metabolite Accumulation, and Improves Forage Quality in Perennial Rye grass. Frontiers in Microbiology, 8: 1664.10.3389/fmicb.2017.01664
  30. Li, F.S., Kang, S.Z. and Zhang, J. 2004. Interactive effects of elevated CO2, nitrogen and drought on leaf area, stomatal conductance, and evapotranspiration of wheat. Agricultural Water Management, 67: 221-233.10.1016/j.agwat.2004.01.005
  31. Liu, T. and Staden, J.V. 2001. Partitioning of carbohydrates in salt sensitive and salt-tolerant soybean callus cultures under salinity stress and its subsequent relief. Journal of Plant Growth Regulation, 33: 13.
  32. Majumder, A.L., Sengupta, S. and Goswani, L. 2010. Osmolyte regulation in abiotic stress. Chap dans Abiotic stress adaptation in plants: Physiological, molecular and genomic foundation. Sous la direction de A. Pareek, S.K. Sopory, H.J. Bohmert et Govindjee. p. 349-370.10.1007/978-90-481-3112-9_16
  33. Mallek-Maalej, E., Boulasnem, F. and Ben Salem, M. 2004. Effet de la salinité sur la germination de graines de céréales cultivées en Tunisie. Cahiers Agriculture, 12: 6-153.
  34. Munns, R. and Tester, M. 2008. Mechanisms of salinity tolerance. Annual Review of Plant Biology, 59: 651-81.10.1146/annurev.arplant.59.032607.092911
  35. Munns, R., James, R. A., and Läuchli, A. 2006. Approaches to increasing the salt tolerance of wheat and other cereals. Journal of Experimental Botany, 57: 1025-1043.10.1093/jxb/erj100
  36. Rahneshan, Z., Nasibi, F. and Ahmadi Moghadam, A. 2018. Effects of salinity stress on some growth, physiological, biochemical parameters and nutrients in two pistachio (Pistacia vera L.) root-stocks. Journal of Plant Interactions, 13: 73-82.10.1080/17429145.2018.1424355
  37. Robert-Seilaniantz, A, Navarro, L, Bari, R. and Jones, JD. 2007. Pathological hormone imbalances. Current Opinion in Plant Biology, 10:372-9.0.10.1016/j.pbi.2007.06.00317646123
  38. Rodriguez, R., White, J., Arnold, A. and Redman R. 2009. Fungal endophytes: diversity and functional roles. New Phytologist, 182: 314-330.10.1111/j.1469-8137.2009.02773.x
  39. Ruiz-Lozano, J.M., Porcel, R., Azcón, R. and Aroca, R. 2012. Regulation by arbuscular mycorrhizae of the integrated physiological response to salinity in plants: new challenges in physiological and molecular studies. Journal of Experimental Botany, 63: 4033-4044.10.1093/jxb/ers126
  40. Sampangi-Ramaiah, M.H., Jagadheesh, Dey, P., Jambagi, S., Vasantha-Kumari, M.M., Oelmüller, R., Nataraja, K.N., Venkataramana-Ravishankar, K., Ravikanth, G. and Uma-Shaanker, R. 2020. An endophyte from salt-adapted Pokkali rice confers salt-tolerance to a salt-sensitive rice variety and targets a unique pattern of genes in its new host. Science Reports, 10: 32-37.10.1038/s41598-020-59998-x703999132094443
  41. Schields R. and Burnett W. 1960. Determination of protein- bound carbohydrate in serum by a modified anthrone method. Analytical Chemistry, 32: 885-886. https://doi.org/10.1021/ac60163a053.10.1021/ac60163a053
  42. Scippa, G., Di Michel, M., Onelli, E., Patrignani, G., Chiatante, D. and Bray, E. 2004. The histone-like protein H1-S and the response of tomato leaves to water deficit. Journal of Experimental Botany, 55: 99-109.10.1093/jxb/erh022
  43. Shankar Naik, B., Shashikala, J. and Krishnamurthy, Y.L. 2008. Diversity of fungal endophytes in shrubby medicinal plants of Malnad region, Western Ghats, Southern India. Fungal Ecology, 1: 89-93.10.1016/j.funeco.2008.05.001
  44. Siddiqui, Z.S., Cho, J.I., Hanpark, S., Kwon, T.R., Ahn, B.O., Lee, G.S., Jeong, M.J., Whankim, K., Konlee, S. and Chulpark, S. 2014. Phenotyping of rice in salt stress environment using high-throughput infrared imaging. Acta Botanica Croatica, 73: 149-158.10.2478/botcro-2013-0027
  45. Tátrai, Z.A., Sanoubar, R., Pluhár, Z., Mancarella, S., Orsini, F. and Gianquinto, G. 2016. Morphological and physiological plant responses to drought stress in Thymus citriodorus. International Journal of Agronomy, 2: 1-8.10.1155/2016/4165750
  46. Troll, W., and Lindsley, J. 1955. A photometric method for determination of proline. Journal of Biological Chemistry, 215: 655-660.10.1016/S0021-9258(18)65988-5
  47. Verbruggen, N. and Hermans, C. 2008. Proline accumulation in plants: a review. Amino Acids 35 (4): 75310.1007/s00726-008-0061-618379856
  48. Wang, W.X., Vinocur, B. and Altman, A. 2003. Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta, 218: 1-14.10.1007/s00425-003-1105-514513379
  49. Wei, Z. and Jousset, A. 2017. Plant breeding goes microbial. Trends Plant Sci 22: 555-558.10.1016/j.tplants.2017.05.00928592368
  50. Widodo, J.H., Newbigin, E., Tester, M., Bacic, A. and Roessner, U. 2009. Metabolic responses to salt stress of barley (Hordeum vulgare L.) cultivars, sahara and clipper, which differ in salinity tolerance. Journal of Experimental Botany, 60: 4089-4103.10.1093/jxb/erp243275502919666960
  51. Yang, Y.L., Guo, J.K., Zhang, F., Zhaob, L.Q. and Zhang, L.X. 2004. NaCl induced changes of the H+-ATPase in root plasma membrane of two wheat cultivars. Plant Science, 166: 913-918.10.1016/j.plantsci.2003.12.002
  52. Yun, P., Xu, L., Wang, S.S., Shabala, L., Shabala, S. and Zhang, W.Y. 2018. Piriformospora indica improves salinity stress tolerance in Zea mays L. plants by regulating Na+ and K+ loading in root and allocating K+ in shoot. Journal of Plant Growth Regulation, 86 (2): 323-331.10.1007/s10725-018-0431-3
  53. Yurieva, O.M., Syrchin, S.O., Nakonechna, L.T. and Kurchenko, I.M. 2018. Influence of endophytic and saprotrophic Penicillium funiculosum strains on resistance of Glycine max L. under salt stress. Біологія, біотехнологія, екологія (Biology, Biotechnology, Ecology) 2 (72): 579-262.10.31548/dopovidi2018.02.002
  54. Zerrad, W., Hillali, S., Mataoui, B., El Antri, S. and Hmyene, A. 2008. Comparative study of the biochemical and molecular mechanisms of resistance to water stress of two varieties of durum wheat. Lebanese Science Journal, 9: 27-36.
  55. Zhang, S., Gan, Y. and Xu, B. 2016. Application of plant-growth-promoting fungi Trichoderma longibrachiatum T6 enhances tolerance of wheat to salt stress through improvement of antioxidative defense system and gene expression. Frontiers in Plant Science, 7: 1405.10.3389/fpls.2016.01405502366427695475
  56. Zraibi, L., Nabloussi, A., Merimi, J., El Amrani, A., Kajeiou, M., Khalid, A. and Serghini Caid, H. 2012. Effet du stress salin sur des paramètres physiologiques et agronomiques de différentes variétés de carthame (Carthamus tinctorius L.). AFRIMED AJ - Al Awamia, 125: 15-40.
DOI: https://doi.org/10.2478/hppj-2023-0002 | Journal eISSN: 2732-656X | Journal ISSN: 1791-3691
Language: English
Page range: 12 - 22
Submitted on: Apr 15, 2020
Accepted on: Dec 6, 2022
Published on: Jan 17, 2023
Published by: Benaki Phytopathological Institute
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2023 R. Kouadria, M. Bouzouina, B. Lotmani, S. Soualem, published by Benaki Phytopathological Institute
This work is licensed under the Creative Commons Attribution 4.0 License.