Have a personal or library account? Click to login
Evaluation of in-vitro antifungal activity against Fusarium incarnatum of binary and ternary combinations of lemongrass, garlic and mustard oil-encapsulated lipid nanoemulsions Cover

Evaluation of in-vitro antifungal activity against Fusarium incarnatum of binary and ternary combinations of lemongrass, garlic and mustard oil-encapsulated lipid nanoemulsions

Open Access
|Jan 2023

References

  1. Akram, W., Ahmad, A., Luo, W., Yasin, N.A., Wu, T., Guo, J., Wang, Q. and Li, G. 2019. First report of stem and root rot of Chinese kale caused by Fusarium incarnatum-equiseti species complex in China. Plant Disease, 103: 1781. DOI: https://doi.org/10.1094/PDIS-02-19-0261-PDN.10.1094/PDIS-02-19-0261-PDN
  2. Amini, M., Safaie, N., Salmani, M.J. and Shams-Bakhsh, M. 2012. Antifungal activity of three medicinal plant essential oils against some phytopathogenic fungi. Trakia Journal of Sciences, 10: 1–8.
  3. Bedoya-Serna, C.M., Dacanala, G.C., Fernandes, A.M. and Pinho, S.C. 2018. Antifungal activity of nanoemulsions encapsulating oregano (Origanum vulgare) essential oil: in vitro study and application in Minas Padrão cheese. Brazilian Journal of Microbiology, 49: 929–935. DOI: https://doi.org/10.1016/j.bjm.2018.05.004.10.1016/j.bjm.2018.05.004617572930145265
  4. Boukhatem, M.N., Ferhat, M.A., Kameli, A., Saidi, F. and Kebir, H.T. 2014. Lemongrass (Cymbopogon citratus) essential oil as a potent anti-inflammatory and antifungal drugs. Libyan Journal of Medicine, 9: 25431 (p. 1–10). DOI: https://doi.org/10.3402/ljm.v9.25431.10.3402/ljm.v9.25431417011225242268
  5. Bounar, R., Krimat, S., Boureghda, H. and Dob, T. 2020. Chemical analyses, antioxidant and anti-fungal effects of oregano and thyme essential oils alone or in combination against selected Fusarium species. International Food Research Journal, 27: 66–77.
  6. Cheng, F., Cheng, Z., Meng, H. and Tang, X. 2016. The garlic allelochemical diallyl disulfide affects tomato root growth by influencing cell division, phytohormone balance and expansin gene expression. Frontiers in Plant Science, 9: 1199 (p. 1–16). DOI: https://doi.org/10.3389/fpls.2016.01199.10.3389/fpls.2016.01199497736127555862
  7. Drakopoulos, D., Meca, G., Torrijos, R., Marty, A., Kägi, A., Jenny, E., Forrer, H.R., Six, J. and Vogelg-sang, S. 2020. Control of Fusarium graminearum in wheat with mustard-based botanicals: From in vitro to in planta. Frontiers in Microbiology, 11: 1595 (p. 1–15). DOI: https://doi.org/10.3389/fmicb.2020.01595.10.3389/fmicb.2020.01595739649232849332
  8. Dutta, A., Mandal, A., Kundu, A., Malik, M., Chaudhary, A., Khan, M.R., Shanmugam, V., Rao, U., Saha, S., Patanjali, N., Kumar, R., Kumar, A., Dash, S., Singh, P.K. and Singh, A. 2021. Deciphering the behavioral response of Meloidogyne incognita and Fusarium oxysporum toward mustard essential oil. Frontiers in Plant Science, 12: 714730 (p. 1–16). DOI: https://doi.org/10.3389/fpls.2021.714730.10.3389/fpls.2021.714730842744134512695
  9. Eke, P., Adamou, S., Fokom, R., Wakam, L.N., Nwaga, D. and Boyom, F.F. 2020. Arbuscular mycorrhizal fungi alter antifungal potential of lemongrass essential oil against Fusarium solani, causing root rot in common bean (Phaseolus vulgaris L.). Heliyon, 6: e05737 (p. 1–9). DOI: https://doi.org/10.1016/j.heliyon.2020.e05737.10.1016/j.heliyon.2020.e05737775837133376819
  10. Gressel, J. 2020. Perspective: present pesticide discovery paradigms promote the evolution of resistance – learn from nature and prioritize multi-target site inhibitor design. Pest Management Science, 76: 421–425. DOI: https://doi.org/10.1002/ps.5649.10.1002/ps.564931613036
  11. Hassanin, M.M.H., Abd-El-Sayed, M.A. and Abdallah, M.A. 2017. Antifungal activity of some essential oil emulsions and nanoemulsions against Fusarium oxysporum pathogen affecting cumin and geranium plants. Scientific Journal of Flowers and Ornamental Plants, 4: 245–258. DOI: https://doi.org/10.21608/sjfop.2017.11326.10.21608/sjfop.2017.11326
  12. Hayat, S., Cheng, Z., Ahmad, H., Ali, M., Chen, X. and Wang, M. 2016. Garlic, from remedy to stimulant: Evaluation of antifungal potential reveals diversity in phytoalexin allicin content among garlic cultivars; allicin containing aqueous garlic extracts trigger antioxidants in cucumber. Frontiers in Plant Science, 7: 1235 (p. 1–15). DOI: https://doi.org/10.3389/fpls.2016.01235.10.3389/fpls.2016.01235499699327610111
  13. Hossain, F., Follett, P., Dang, V.K., Harich, M., Salmieri, S. and Lacroix, M. 2016. Evidence for synergistic activity of plant-derived essential oils against fungal pathogens of food. Food Microbiology, 53 (Pt B): 24–30. DOI: https://doi.org/10.1016/j.fm.2015.08.006.10.1016/j.fm.2015.08.00626678126
  14. Ianevski, A., He, L., Aittokallio, T. and Tang, J. 2017. SynergyFinder: a web application for analyzing drug combination dose-response matrix data. Bioinformatics, 33: 2413–2415. DOI: https://doi.org/10.1093/bioinformatics/btx162.10.1093/bioinformatics/btx162555461628379339
  15. Jiang, N., Yan, J., Liang, Y., Shi, Y., He, Z., Wu, Y., Zeng, Q., Liu, X. and Peng, J. 2020. Resistance genes and their interactions with bacterial blight/leaf streak pathogens (Xanthomonas oryzae) in rice (Oryza sativa L.) - an updated review. Rice, 13: 3 (p. 1–12). DOI: https://doi.org/10.1186/s12284-019-0358-y.10.1186/s12284-019-0358-y694933231915945
  16. Jyoti, Singh, N.K., Singh, H., Mehta, N. and Rath, S.S. 2019. In vitro assessment of synergistic combinations of essential oils against Rhipicephalus (Boophilus) microplus (Acari: Ixodidae). Experimental Parasitology, 201: 42–48. DOI: https://doi.org/10.1016/j.exppara.2019.04.007.10.1016/j.exppara.2019.04.00731034814
  17. Kamsu, N.P., Tchinda, S.E., Tchameni, N.S., Jazet, D.P.M., Madjouko, M.A., Youassi-Youassi, O., Sameza, M.L., Tchoumbougnang, F. and Menut, C. 2019. Antifungal activities of essential oils of cinnamon (Cinnamomum zeylanicum) and lemongrass (Cymbopogon citratus) on crown rot pathogens of banana. Indian Phytopathology, 72: 131–137. DOI: https://doi.org/10.1007/s42360-018-0104-1.10.1007/s42360-018-0104-1
  18. Kim, J.H., Ko, J.A., Kim, J.T., Cha, D.S., Cho, J.H., Park, H.J. and Shin, G.H. 2014. Preparation of a capsaicin-loaded nanoemulsion for improving skin penetration. Journal of Agricultural and Food Chemistry, 62: 725–732. DOI: https://doi.org/10.1021/jf404220n.10.1021/jf404220n24417234
  19. La-Torre, A., Caradonia, F., Matere, A. and Battaglia, V. 2016. Using plant essential oils to control Fusarium wilt in tomato plants. European Journal of Plant Pathology, 144: 487–496. DOI: https://doi.org/10.1007/s10658-015-0789-2.10.1007/s10658-015-0789-2
  20. Li, Y., Nie, Y., Zhou, L., Li, S., Tang, X. and Ding, Y. 2014. The possible mechanism of antifungal activity of cinnamon oil against Rhizopus nigri-cans. Journal of Chemical and Pharmaceutical Research, 6: 12–20.10.1016/j.steroids.2014.07.011
  21. Mehnert, W. and Mäder, K. 2001. Solid lipid nano-particles: production, characterization and applications. Advanced Drug Delivery Reviews, 47: 165–196. DOI: https://doi.org/10.1016/s0169-409x(01)00105-3.10.1016/S0169-409X(01)00105-3
  22. Nguyen, M.H., Vu, N.B.D, Nguyen, T.H.N, Tran, T.N.M, Le, H.S., Tran, T.T, Le, X.C, Le, V.T, Nguyen, N.T.T. and Trinh, N.A. 2020. Effective biocontrol of nematodes using lipid nanoemulsions co-encapsulating chili oil, cinnamon oil and neem oil. International Journal of Pest Management. DOI: https://doi.org/10.1080/09670874.2020.1861361.10.1080/09670874.2020.1861361
  23. Nguyen, M.H., Tran, T.N.M. and Vu, N.B.D. 2022. Anti-fungal activity of essential oil-encapsulated lipid nanoemulsions formulations against leaf spot disease on tomato caused by Alternaria alternata. Archives of Phytopathology and Plant Protection, 55: 235–257. DOI: https://doi.org/10.1080/03235408.2021.2015887.10.1080/03235408.2021.2015887
  24. Omar, M.S. and Kordali, S. 2019. Review of essential oils as antifugal agents for plant fungal diseases. Ziraat Fak Derg, 14: 294–301.
  25. Omidbeygi, M., Barzegar, M., Hamidi, Z. and Nafhdibadi, H. 2007. Antifungal activity of thyme, summer savory and clove essential oils against Aspergillus flavus in liquid medium and tomato paste. Food Control, 18: 1518–1523. DOI: https://doi.org/10.1016/j.foodcont.2006.12.003.10.1016/j.foodcont.2006.12.003
  26. Park, J.Y., Kim, S.H., Kim, N.H., Lee, S.W., Jeun, Y.C. and Hong, J.K. 2017. Differential inhibitory activities of four plant essential oils on in vitro growth of Fusarium oxysporum f. sp. fragariae causing Fusarium wilt in strawberry plants. Plant Pathology Journal, 33: 582–588. DOI: https://doi.org/10.5423/PPJ.OA.06.2017.0133.10.5423/PPJ.OA.06.2017.0133572060529238281
  27. Peng, C., Zhao, S.Q., Zhang, J., Huang, G.Y., Chen, L.Y. and Zhao, F.Y. 2014. Chemical composition, antimicrobial property and microencapsulation of Mustard (Sinapis alba) seed essential oil by complex coacervation. Food Chemistry, 165: 560–568. DOI: https://doi.org/10.1016/j.foodchem.2014.05.126.10.1016/j.foodchem.2014.05.12625038712
  28. Rao, B.R.R., Kaul, P.N., Syamasundar, K.V. and Ramesh, S. 2005. Chemical profiles of primary and secondary essential oils of palmarosa (Cymbopogon martinii (Roxb.) Wats var. motia Burk.). Industrial Crops and Products, 21: 121–127. DOI: https://doi.org/10.1016/j.indcrop.2004.02.002.10.1016/j.indcrop.2004.02.002
  29. Rehman, A., Qunyi, T., Sharif, H.R., Kormac, S.A., Karim, A., Manzoor, M.F., Mehmood, A., Iqbal, M.W., Raza, H., Ali, A. and Mehmood, T. 2021. Biopolymer based nanoemulsion delivery system: An effective approach to boost the antioxidant potential of essential oil in food products. Carbohydrate Polymer Technologies and Applications, 2: 100082 (p. 1–12). DOI: https://doi.org/10.1016/j.carpta.2021.100082.10.1016/j.carpta.2021.100082
  30. Roselló, J., Sempere, F., Sanz-Berzosa, I., Chiralt, A. and Santamarina, M.P. 2015. Antifungal activity and potential use of essential oils against Fusarium culmorum and Fusarium verticillioides. Journal of Essential Oil Bearing Plants, 18: 359–367. DOI: https://doi.org/10.1080/0972060X.2015.1010601.10.1080/0972060X.2015.1010601
  31. Sharif, R.H., Paul, R.K., Bhattacharjya, D.K. and Ahmed, K.U. 2017. Physical characters of oil seeds from selected mustard genotypes. Journal of Bangladesh Agricultural University, 15: 27–40. DOI: https://doi.org/10.3329/jbau.v15i1.33527.10.3329/jbau.v15i1.33527
  32. Wang, A., Bi, Y., Wen, X., Wang, Y. and Cai, H. 2020. Antifungal activity of 4 kinds of aromatic essential oil derived from plants to pathogenic fungi of bamboo. Scientia Silvae Sinicae, 56: 59–67. DOI: https://doi.org/10.11707/j.1001-7488.20200606.
  33. Wang, Y., Wei, K., Han, X., Zhao, D., Zheng, Y., Chao, J., Kong, F. and Zhang, C.S. 2019. The antifungal effect of garlic essential oil on Phytophthora nicotianae and the inhibitory component involved. Biomolecules, 9: 632 (p. 1–12). DOI: https://doi.org/10.3390/biom9100632.10.3390/biom9100632684368731640228
  34. Yang, L.N., He, M.H., Ouyang, H.B., Zhu, W., Pan, Z.C., Sui, Q.J., Shang, L.P. and Zhan, J. 2019. Cross-resistance of the pathogenic fungus Alternaria alternata to fungicides with different modes of action. BMC Microbiology, 19: 205 (p. 1–10). DOI: https://doi.org/10.1186/s12866-019-1574-8.10.1186/s12866-019-1574-8672042831477005
  35. Zubrod, J.P., Bundschuh, M., Arts, G., Brühl, C., Imfeld, G., Knäbel, A., Payraudeau, S., Rasmussen, J.J., Rohr, J., Scharmüller, A., Smalling, K., Stehle, S., Schulz, R. and Schäfer, R.B. 2019. Fungicides – an overlooked pesticide class?. Environmental Science & Technology, 53: 3347–3365. DOI: https://doi.org/10.1021/acs.est.8b04392.10.1021/acs.est.8b04392653613630835448
DOI: https://doi.org/10.2478/hppj-2023-0001 | Journal eISSN: 2732-656X | Journal ISSN: 1791-3691
Language: English
Page range: 1 - 11
Submitted on: Sep 22, 2021
Accepted on: Sep 28, 2022
Published on: Jan 17, 2023
Published by: Benaki Phytopathological Institute
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2023 Minh-Hiep Nguyen, Thi-Ngoc-Mai Tran, published by Benaki Phytopathological Institute
This work is licensed under the Creative Commons Attribution 4.0 License.