Have a personal or library account? Click to login
Prototype Spatio-temporal Predictive System of pest development of the codling moth, Cydia pomonella, in Kazakhstan Cover

Prototype Spatio-temporal Predictive System of pest development of the codling moth, Cydia pomonella, in Kazakhstan

Open Access
|Dec 2019

References

  1. Afonin, A.N., Kazakov, E.E, Milyutina, E.A. unpublished.
  2. Afonin, A.N., Sevryukov, S.Yu., Soloviev, P.A., Luneva, N.N. 2016. Web-GIS for the solution of ecological-geographical analysis and modeling tasks: new opportunities. Vestnik of Saint Petersburg University, Geography and geology, 7(4): 97-111.10.21638/11701/spbu07.2016.408
  3. Benali, A., Carvalho, A. C., Nunes, J. P., Carvalhais, N. and Santos, A. 2012. Estimating air surface temperature in Portugal using MODIS LST data. Remote Sensing of Environment, 124: 108-121.10.1016/j.rse.2012.04.024
  4. Blum M., Lensky, I.M., Nestel, D. 2013. Estimation of olive grove canopy temperature from MODIS thermal imagery is more accurate than interpolation from meteorological stations. Agricultural and Forest Meteorology, 176: 90-93.10.1016/j.agrformet.2013.03.007
  5. Blum, M., Lensky, I.M., Rempoulakis, P., Nestel, D. 2015. Modeling insect population fluctuations with satellite land surface temperature. Ecological Modelling, 311: 39–47.10.1016/j.ecolmodel.2015.05.005
  6. Blum, M., Nestel, D., Cohen, Y., Goldshtein, E., Helman, D., Lensky, I.M. 2018. Predicting Heliothis (Helicoverpa armigera) pest population dynamics with an age-structured insect population model driven by satellite data. Ecological Modelling, 369: 1–12.10.1016/j.ecolmodel.2017.12.019
  7. Boldyrev, M.I. 1981. Short-term forecasting of the development of codling moths. Plant protection, 5: 38-39.
  8. Boldyrev, M.I. 1991. Optimal timing and measures to combat the codling moth. Gardening and viticulture, 6: 13-15.
  9. Bulygina, O.N., Razuvaev, V.N., Aleksandrova, T.M. 2018. Description of the data of air daily temperatures and precipitation at meteorological stations of Russia and neighboring countries. http://meteo.ru/data/162-temperature-precipitation
  10. Drozda, V.F., Sagitov, A.O. 2017. Evaluation of technologies for protection of apple trees from codling moth. Plant Protection and Quarantine, 5: 17-27.
  11. Eastman, J.R. 2012. IDRISI Selva Tutorial, Manual Version 17.0, Clark University. http://uhulag.mendelu.cz/files/pagesdata/eng/gis/idrisi_selva_tutorial.pdf
  12. Fu, G., Shen, Z., Zhang, X., Shi, P., Zhang, Y. and Wu, J. 2011. Estimating air temperature of an alpine meadow on the Northern Tibetan Plateau using MODIS land surface temperature. Acta Ecologica Sinica, 31(1): 8-13.10.1016/j.chnaes.2010.11.002
  13. Hill, T. and Lewicki, P. 2007. STATISTICS: Methods and Applications. StatSoft,Tusla, OK, 719 p.
  14. Jones, V.P., Hilton, R., Brunner, J.F., Bentley, W.J., Alston, D.G., Barrett, B. et al. 2013. Predicting the emergence of the codling moth, Cydia pomonella (Lepidoptera: Tortricidae), on a degree-day scale in North America. Pest Management Science, 69: 1393-1398.10.1002/ps.3519
  15. Knight, A.L. 2007. Adjusting the phenology model of codling moth (Lepidoptera: Tortricidae) in Washington state apple orchards. Environmental Entomology, 36: 1485-1493.10.1603/0046-225X(2007)36[1485:ATPMOC]2.0.CO;2
  16. Lensky, I.M. and Dayan, U. 2011. Detection of finescale climatic features from satellites and implications for agricultural planning. Bull. Am. Meteorol. Soc., 92: 1131-1136.10.1175/2011BAMS3160.1
  17. Marques da Silva, J.R., Damásio, C.V., Sousa, A.M.O., Bugalho, L., Pessanha, L., Quaresma P. 2015. Agriculture pest and disease risk maps considering MSG satellite data and land surface temperature. International Journal of Applied Earth Observation and Geoinformation, 38: 40-50.10.1016/j.jag.2014.12.016
  18. Meyer, H., Katurji, M., Appelhans, T., Müller, M.U., Nauss, T., Roudier, P. and Zawar-Reza, P. 2016. Mapping daily air temperature for Antarctica based on MODIS LST. Remote Sensing, 8(9), 732.10.3390/rs8090732
  19. MODIS/Terra Land Surface Temperature/Emissivity 8-Day L3 Global 1km SIN Grid V006. 2017. https://lpdaac.usgs.gov/dataset_discovery
  20. Pralya, I.I. 2013. Protection of the apple orchard. AMA-Press, Moscow, 91 p.
  21. Riedl, H., Croft, B.A. and Howitt., A.J. 1976. Forecasting codling moth phenology based on pheromone trap catches and physiological-time models. Canadian Entomologist, 108: 449-460.10.4039/Ent108449-5
  22. Sepulcre-Cantó, G., Zarco-Tejada, P.J., Jiménez-Mun oz, J.C., Sobrino, J.A., Soriano, M.A., Fereres, E., Vega, V., Pastor, M. 2007. Monitoring yield and fruit quality parameters in open-canopy tree crops under water stress. Implications for ASTER. Remote Sensing of Environment, 107: 455–470.10.1016/j.rse.2006.09.014
  23. Shen, S. and Leptoukh, G.G. 2011. Estimation of surface air temperature over central and eastern Eurasia from MODIS land surface temperature. Environmental Research Letters, 6(4) 045206.10.1088/1748-9326/6/4/045206
  24. Sona, N.T., Chena, C.F., Chenb, C.R., Changa L.Y., Minh V.Q. 2012. Monitoring agricultural drought in the Lower Mekong Basin using MODIS NDVI and land surface temperature data. International Journal of Applied Earth Observation and Geoinformation, 18: 417–427.10.1016/j.jag.2012.03.014
  25. The Ministry of Agriculture of the Republic of Kazakhstan. 2017. http://mgov.kz/en/napravleniya-razvitiya/fitosanitarnaya-bezopasnost/
  26. Vancutsem, C., Ceccato, P., Dinku, T. and Connor, S.J. 2010. Evaluation of MODIS land surface temperature data to estimate air temperature in different ecosystems over Africa. Remote Sensing of Environment, 114(2): 449-465.10.1016/j.rse.2009.10.002
  27. Wan, Z., Hook, S., Hulley, G. 2015. MOD11A2 MODIS/Terra Land Surface Temperature/Emissivity 8-Day L3 Global 1km SIN Grid V006 [Data set]. NASA EOSDIS LP DAAC. doi: 10.5067/MODIS/MOD11A2.006
  28. Welch, S., Croft, B.A. Brunner, J.F. and Michels, M. 1978. PETE: An extension phenology modeling system for management of multi-species pest complex. Environmental Entomology, 7: 487-494.10.1093/ee/7.4.487
  29. Williamson, S.N., Hik, D.S., Gamon, J.A., Kavanaugh, J.L. and Flowers, G.E. 2014. Estimating temperature fields from MODIS land surface temperature and air temperature observations in a sub-arctic alpine environment. Remote Sensing, 6(2): 946-963.10.3390/rs6020946
  30. Yones, M.S., Arafat, S., Hadid, A.A., Elrahman H.A. and Dahi, H.F. 2012. Determination of the best timing for control application against cotton leaf worm using remote sensing and geographical information techniques. The Egyptian Journal of Remote Sensing and Space Sciences, 15: 151-160.10.1016/j.ejrs.2012.05.004
  31. Zlatanova, A.A. 1978. Forecast of the emergence of individual phases in codling moth development. Proceedings of the Kazakh RIPPQ, 14: 30-36.
  32. Zlatanova, A.A., Pastukhova, N.P. 1975. Influence of the photoperiod and temperature on codling moth and microdus development during reactivation. Ekologiya, 5: 82-83.
DOI: https://doi.org/10.2478/hppj-2020-0001 | Journal eISSN: 2732-656X | Journal ISSN: 1791-3691
Language: English
Page range: 1 - 12
Submitted on: Dec 27, 2017
Accepted on: Jun 20, 2019
Published on: Dec 21, 2019
Published by: Benaki Phytopathological Institute
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2019 A. Afonin, B. Kopzhassarov, E. Milyutina, E. Kazakov, A. Sarbassova, A. Seisenova, published by Benaki Phytopathological Institute
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.