Have a personal or library account? Click to login
Exploring environmental determinants of Fusarium wilt occurrence on banana in South Central Mindanao, Philippines Cover

Exploring environmental determinants of Fusarium wilt occurrence on banana in South Central Mindanao, Philippines

Open Access
|Jul 2019

References

  1. Abdullah, A.Y.M., Dewan, A., Shogib, M.R.I., Rahman, M.M. and Hossain, M.F. 2017. Environmental factors associated with the distribution of visceral leishmaniasis in endemic areas of Bangladesh: modeling the ecological niche. Tropical Medicine and Health, 45: 13. https://doi.org/10.1186/s41182-017-0054-9.10.1186/s41182-017-0054-9542762228515660
  2. Aguilar, E.A. 1998. Response of banana roots to oxygen deficiency and its implications for Fusarium wilt. In V. G. Saúco (Ed.), International Symposium on Banana in the Subtropics (Puerto de la Cruz, Tenerife, S ed., Vol. Acta Horticulturae No. 490, pp. 223-228). Leuven, Belgium: ISHS (Society for Horticultural Science).10.17660/ActaHortic.1998.490.22
  3. Aguilar, E.A., Turner, D.W. and Sivasithamparam, K. 2000. Fusarium oxysporum f. sp. cubense inoculation and hypoxia alter peroxidase and phenylalanine ammonia lyase activities in nodal roots of banana cultivars (Musa sp.) differing in their susceptibility to Fusarium wilt. Australian Journal of Botany, 48: 589–596.10.1071/BT99009
  4. Allouche, O. Tsoar, A. and Kadmon, R. 2006. Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS). Journal of Applied Ecology, 43: 1223–1232, https://doi.org/10.1111/j.1365-2664.2006.01214.x.10.1111/j.1365-2664.2006.01214.x
  5. Booth, T.H., Nix, H.A., Busby, J.R. and Hutchinson, M.F. 2014. Bioclim: the first species distribution modelling package, its early applications and relevance to most current MaxEnt studies. Diversity and Distributions, 20: 1–9, https://doi.org/10.1111/ddi.12144.10.1111/ddi.12144
  6. Bosso, L., Russo, D., Di Febbraro, M., Cristinzio, G. and Zoina, A. 2016. Potential distribution of Xylella fastidiosa in Italy: a maximum entropy model. Phytopathologia Mediterranea, [S.l.], v. 55, n. 1, p. 62-72. ISSN 1593-2095. Available at: <http://www.fupress.net/index.php/pm/article/view/16429>.
  7. Cook, D.C., Taylor, A.S., Meldrum, R.A. and Drenth, A. 2015. Potential economic impact of Panama disease (Tropical Race 4) on the Australian banana industry. Journal of Plant Diseases and Protection, 122: 229–237, https://doi.org/10.1007/BF03356557.10.1007/BF03356557
  8. Deltour, P., C. França, S., Liparini Pereira, O., Cardoso, I., De Neve, S., Debode, J. and Höfte, M. 2017. Disease suppressiveness to Fusarium wilt of banana in an agroforestry system: Influence of soil characteristics and plant community. Agriculture, Ecosystems & Environment, 239: 173–181, https://doi.org/10.1016/j.agee.2017.01.018.10.1016/j.agee.2017.01.018
  9. Dormann, C.F., Purschke, O., Márquez, J.R.G., Lautenbach, S. and Schröder, B. 2008. Components of uncertainty in species distribution analysis: A case study of the Great Grey Shrike. Ecology, 89: 3371–3386, https://doi.org/10.1890/07-1772.1.10.1890/07-1772.119137944
  10. Elith, J. 2000. Quantitative Methods for Modeling Species Habitat: Comparative performance and an application to Australian plants. In Ferson, S. and Burgman, M. (Eds), Quantitative Methods for Conservation Biology, pp. 39–58. New York, NY: Springer New York, https://doi.org/10.1007/0-387-22648-6_4.10.1007/0-387-22648-6_4
  11. Elith, J., Phillips, S.J., Hastie, T., Dudík, M., Chee, Y.E. and Yates, C.J. 2011. A statistical explanation of MaxEnt for ecologists. Diversity and Distributions, 17: 43–57, https://doi.org/10.1111/j.1472-4642.2010.00725.x.10.1111/j.1472-4642.2010.00725.x
  12. Farr, T.G., Rosen, P.A., Caro, E., Crippen, R., Duren, R., Hensley, S., Kobrick, M., Paller, M., Rodriguez, E., Roth, L., Seal, D., Shaffer, S., Shimada, J., Umland, J., Werner, M., Oskin, M., Burbank, D. and Alsdorf, D. 2007. The Shuttle Radar Topography Mission. Reviews of Geophysics, 45, https://doi.org/10.1029/2005RG00018310.1029/2005RG000183
  13. Fu, L., Ruan, Y., Tao, C., Li, R. and Shen, Q. 2016. Continous application of bioorganic fertilizer induced resilient culturable bacteria community associated with banana Fusarium wilt suppression. Scientific Reports, 6: 27731. https://doi:10.1038/srep27731.10.1038/srep27731491007427306096
  14. Galdino, T.V. da S., Kumar, S., Oliveira, L.S.S., Alfenas, A.C., Neven, L.G., Al-Sadi, A.M. and Picanço, M.C. 2016. Mapping global potential risk of mango sudden decline disease caused by Ceratocystis fimbriata. PLOS ONE, 11: e0159450, https://doi.org/10.1371/journal.pone.0159450.10.1371/journal.pone.0159450494496727415625
  15. Ghaemi, A., Rahimi, A. and Banihashemi, Z. 2011. Effects of Water Stress and Fusarium oxysporum f. sp. lycopersici on Growth (leaf area, plant height, shoot dry matter) and shoot nitrogen content of tomatoes under greenhouse conditions. Iran Agricultural Research, 29: 51–62, https://doi.org/10.22099/iar.2011.136.
  16. Ghag, S.B., Shekhawat, U.K.S. and Ganapathi, T.R. 2015. Fusarium wilt of banana: biology, epidemiology and management. International Journal of Pest Management, 61: 250–263, https://doi.org/10.1080/09670874.2015.1043972.10.1080/09670874.2015.1043972
  17. Gillingham, P.K., Huntley, B., Kunin, W.E. and Thomas, C.D. 2012. The effect of spatial resolution on projected responses to climate warming. Diversity and Distributions, 18: 990–1000, https://doi.org/10.1111/j.1472-4642.2012.00933.x.10.1111/j.1472-4642.2012.00933.x
  18. Harris, I., Jones, P.D., Osborn, T.J. and Lister, D.H. 2014. Updated high-resolution grids of monthly climatic observations – the CRU TS3.10 Dataset. International Journal of Climatology, 34: 623–642, https://doi.org/10.1002/joc.3711.10.1002/joc.3711
  19. Hengl, T., Jesus, J.M. de, Heuvelink, G.B.M., Gonzalez, M.R., Kilibarda, M., Blagotić, A., Shangguan, W., Wright, M.N., Geng, X., Bauer-Marschallinger, B., Guevara, M.A., Vargas, R., MacMillan, R.A., Batjes, N.H., Leenaars, J.G.B., Ribeiro, E,; Wheeler, I,; Mantel, S. and Kempen, B. 2017. SoilGrids250m: Global gridded soil information based on machine learning. PLOS ONE, 12: e0169748, https://doi.org/10.1371/journal.pone.0169748.10.1371/journal.pone.0169748531320628207752
  20. Heumann, B.W., Walsh, S.J. and McDaniel, P.M. 2011. Assessing the application of a geographic presence-only model for land suitability mapping. Ecological Informatics, 6: 257–269, https://doi.org/10.1016/j.ecoinf.2011.04.004.10.1016/j.ecoinf.2011.04.004315866421860606
  21. Hijmans, R.J. 2014. Raster: Geographic data analysis and modeling. R package version 2.3-12, http://CRAN.R-project.org/package=raster.
  22. Hijmans, R.J., Cameron, S.E., Parra, J.L., Jones, P.G. and Jarvis, A. 2005. Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology, 25: 1965–1978, https://doi.org/10.1002/joc.1276.10.1002/joc.1276
  23. Hijmans, R.J., Phillips, S.J. and Elith, J. 2016. Dismo: Species Distribution Modeling. R package version 1.1-1, https://CRAN.R-project.org/package=dismo.
  24. Ihaka, R. and Gentleman, R. 1996. R: A Language for Data Analysis and Graphics. Journal of Computational and Graphical Statistics, 5: 299–314, https://doi.org/10.1080/10618600.1996.10474713.10.1080/10618600.1996.10474713
  25. Jarnevich, C.S., Stohlgren, T.J., Kumar, S., Morisette, J.T. and Holcombe, T.R. 2015. Caveats for correlative species distribution modeling. Ecological Informatics, 29, Part 1: 6–15, https://doi.org/10.1016/j.ecoinf.2015.06.007.10.1016/j.ecoinf.2015.06.007
  26. Kalle, R., Ramesh, T., Qureshi, Q. and Sankar, K. 2013. Predicting the distribution pattern of small carnivores in response to environmental factors in the Western Ghats. PLOS ONE, 8: e79295, https://doi.org/10.1371/journal.pone.0079295.10.1371/journal.pone.0079295382836424244470
  27. Kangire, A, Rutherfod, M.A. and Gold, C.S. 2001. Distribution of Fusarium wilt and the populations of Fusarium oxysporum f. sp. cubense on bananas in Uganda. In Molina, A.B.; Masdek, N.H. and Liew, K.W. (Eds), Banana Fusarium Wilt Management: towards Sustainable Cultivation, pp. 152–161. Los Banos, Laguna: INIBAP-ASPNET.
  28. Karangwa, P., Blomme, G., Beed, F., Niyongere, C. and Viljoen, A. 2016. The distribution and incidence of banana Fusarium wilt in subsistence farming systems in east and central Africa. Crop Protection, 84: 132–140, https://doi.org/10.1016/j.cropro.2016.03.003.10.1016/j.cropro.2016.03.003
  29. Lee, Y.H., Cha, K.H., Lee, D.G., Shim, H.K., Ko, S.J., Park, I.J. and Yang, K.Y. 2004. Cultural and rainfall factors involved in disease development of Fusarium wilt of sweet potato. Plant Pathology Journal, 20: 92–96.10.5423/PPJ.2004.20.2.092
  30. Li, C., Chen, S., Zuo, C., Sun, Q., Ye, Q., Yi, G. and Huang, B. 2011. The use of GFP-transformed isolates to study infection of banana with Fusarium oxysporum f. sp. cubense race 4. European Journal of Plant Pathology, 131: 327–340, https://doi.org/10.1007/s10658-011-9811-5.10.1007/s10658-011-9811-5
  31. Merow, C., Smith, M.J. and Silander, J.A. 2013. A practical guide to MaxEnt for modeling species’ distributions: what it does, and why inputs and settings matter. Ecography, 36: 1058–1069, https://doi.org/10.1111/j.1600-0587.2013.07872.x.10.1111/j.1600-0587.2013.07872.x
  32. Narouei-Khandan, H.A., Halbert, S.E., Worner, S.P. and Bruggen, A.H.C. van. 2016. Global climate suitability of citrus huanglongbing and its vector, the Asian citrus psyllid, using two correlative species distribution modeling approaches, with emphasis on the USA. European Journal of Plant Pathology, 144: 655–670, https://doi.org/10.1007/s10658-015-0804-7.10.1007/s10658-015-0804-7
  33. Pattison, A.B., Wright, C.L., Kukulies, T.L. and Molina, A.B. 2014. Ground cover management alters development of Fusarium wilt symptoms in Ducasse bananas. Australasian Plant Pathology, 43: 465–476, https://doi.org/10.1007/s13313-014-0296-5.10.1007/s13313-014-0296-5
  34. Perez-Vicente, L., Dita, M.A. and Martínez-de la Parte MSc, E. 2014. Technical manual prevention and diagnostic of Fusarium wilt (Panama disease) of banana caused by Fusarium oxysporum f. sp. cubense Tropical Race 4 (TR4), https://www.research-gate.net/profile/Einar_Martinez_de_la_Parte/publication/273632807_Technical_Manual_Prevention_and_diagnostic_of_Fusarium_WiltPanama_Disease_of_banana_caused_by_Fusarium_oxysporum_f_sp_cubense_Tropical_Race_4TR4/links/55072e450cf27e990e050b7b/Technical-Manual-Prevention-and-diagnostic-of-Fusarium-WiltPanama-Disease-of-banana-caused-by-Fusarium-oxysporum-f-sp-cubense-Tropical-Race-4TR4.pdf
  35. Phillips, S.J., Anderson, R.P. and Schapire, R.E. 2006. Maximum entropy modeling of species geographic distributions. Ecological Modelling, 190: 231–259, https://doi.org/10.1016/j.ecolmodel.2005.03.026.10.1016/j.ecolmodel.2005.03.026
  36. Phillips, S.J., Dudík, M. and Schapire, R.E. 2018. Maxent software for modeling species niches and distributions, url: http://biodiversityinformatics.amnh.org/open_source/maxent/
  37. Ploetz, R.C. 2006. Fusarium Wilt of Banana Is Caused by Several Pathogens Referred to as Fusarium oxysporum f. sp. cubense. Phytopathology, 96: 653–656, https://doi.org/10.1094/PHYTO-96-0653.10.1094/PHYTO-96-065318943184
  38. Ploetz, R.C. 2015a. Fusarium wilt of banana. Phytopathology, 105: 1512–1521, https://doi.org/10.1094/PHYTO-04-15-0101-RVW.10.1094/PHYTO-04-15-0101-RVW26057187
  39. Ploetz, R.C. 2015b. Management of Fusarium wilt of banana: A review with special reference to tropical race 4. Crop Protection, 73: 7–15, https://doi.org/10.1016/j.cropro.2015.01.007.10.1016/j.cropro.2015.01.007
  40. PSA. 2017. CountrySTAT Philippines. Other Crops; Area Planted or Harvested. http://countrystat.psa.gov.ph/ (accessed 13 May 2017)
  41. R Core Team. 2014. R: A Language and Environment for Statistical ComputingR Foundation for Statistical Computing, 2014, http://www.R-project.org/.
  42. Ravi, I. and Vaganan, M.M. 2016. Abiotic stress tolerance in banana. In Rao, N.K.S.; Shivashankara, K.S. and Laxman, R.H. (Eds), Abiotic Stress Physiology of Horticultural Crops, pp. 207–222. Springer India, https://doi.org/10.1007/978-81-322-2725-0_1210.1007/978-81-322-2725-0_12
  43. Rödder, D., Schmidtlein, S., Veith, M. and Lötters, S. 2009. Alien invasive slider turtle in unpredicted habitat: A matter of niche shift or of predictors Studied? PLOS ONE 4: e7843, https://doi.org/10.1371/journal.pone.0007843.10.1371/journal.pone.0007843
  44. Roux, N., Baurens, F.-C.; Doležel, J.; Hřibová, E.; Heslop-Harrison, P., Town, C., Sasaki, T., Matsumoto, T., Aert, R., Remy, S., Souza, M. and Lagoda, P. 2008. Genomics of banana and plantain (Musa spp.). Major Staple Crops in the Tropics 83–111, https://doi.org/10.1007/978-0-387-71219-2_4.10.1007/978-0-387-71219-2_4
  45. Salvacion, A.R. 2016. Terrain characterization of small island using publicly available data and open-source software: a case study of Marin-duque, Philippines. Modeling Earth Systems and Environment, 2: 1–9, https://doi.org/10.1007/s40808-016-0085-y.10.1007/s40808-016-0085-y
  46. Salvacion, A.R, Magcale-Macandog, D.B., Cruz, P.C.S., Saludes, R.B., Pangga, I.B. and Cumagun, C.J.R. 2018. Evaluation and spatial downscaling of CRU TS precipitation data in the Philippines. Modeling Earth Systems and Environment,4: 891–898, https://doi.org/10.1007/s40808-018-0477-2.10.1007/s40808-018-0477-2
  47. Shimwela, M.M., Blackburn, J.K., Jones, J.B., Nkuba, J., Narouei-Khandan, H.A., Ploetz, R.C., Beed, F. and Bruggen, A.H.C. 2016. Local and regional spread of banana Xanthomonas wilt (BXW) in space and time in Kagera, Tanzania. Plant Pathology, 66(6): 1003-1014. https://doi.org/10.1111/ppa.1263710.1111/ppa.12637
  48. Solpot, T.C., Pangga, I.B., Baconguis, R.D.T. and Cumagun, C.J.R. 2016. Occurrence of Fusarium oxysporum f. sp. cubense Tropical race 4 and other genotypes in banana in South-Central Mindanao, Philippines. Philippine Agricultural Scientist, 99: 370–378.
  49. Stover, R.H. 1953. The effect of soil moisture on Fusarium species. Canadian Journal of Botany, 31: 693–697. https://doi.org/10.1139/b53-050.10.1139/b53-050
  50. Stover, R.H. 1962. Fusarial wilt (panama disease) of bananas and other Musa species. Commonwealth Mycological Institute.
  51. Su, Z.-A., Zhang, J.-H. and Nie, X.-J. 2010. Effect of soil erosion on soil properties and crop yields on slopes in the Sichuan Basin, China. Pedosphere, 20: 736–746. https://doi.org/10.1016/S1002-0160(10)60064-1.10.1016/S1002-0160(10)60064-1
  52. Turechek, W.W. and McRoberts, N. 2013. Considerations of scale in the analysis of spatial pattern of plant disease epidemics. Annual Review of Phytopathology, 51: 453–472. https://doi.org/10.1146/annurev-phyto-081211-173017.10.1146/annurev-phyto-081211-17301723725469
  53. Vallejo Pérez, M.R., Téliz Ortiz, D., De La Torre Almaraz, R,; López Martinez, J.O. and Nieto Ángel, D. 2017. Avocado sunblotch viroid: Pest risk and potential impact in México. Crop Protection, 99: 118–127. https://doi.org/10.1016/j.cropro.2017.05.015.10.1016/j.cropro.2017.05.015
  54. West, A.M., Kumar, S., Brown, C.S., Stohlgren, T.J. and Bromberg, J. 2016. Field validation of an invasive species Maxent model. Ecological Informatics, 36: 126–134, https://doi.org/10.1016/j.ecoinf.2016.11.001.10.1016/j.ecoinf.2016.11.001
  55. West, A.M., Kumar, S., Wakie, T., Brown, C.S., Stohlgren, T.J., Laituri, M. and Bromberg, J. 2015. Using high-resolution future climate scenarios to forecast Bromus tectorum invasion in rocky mountain National Park. PLOS ONE, 10: e0117893, https://doi.org/10.1371/journal.pone.0117893.10.1371/journal.pone.0117893433500325695255
  56. Wisz, M.S., Hijmans, R.J., Li, J., Peterson, A.T., Graham, C.H. and Guisan, A. 2008. Effects of sample size on the performance of species distribution models. Diversity and Distributions, 14: 763–773. https://doi.org/10.1111/j.1472-4642.2008.00482.x.10.1111/j.1472-4642.2008.00482.x
  57. Wyckhuys, K.A.G., Korytkowski, C., Martinez, J., Herrera, B., Rojas, M. and Ocampo, J. 2012. Species composition and seasonal occurrence of Diptera associated with passionfruit crops in Colombia. Crop Protection, 32: 90–98. https://doi.org/10.1016/j.cropro.2011.10.003.10.1016/j.cropro.2011.10.003
  58. Zeng, Y., Low, B.W. and Yeo, D.C.J. 2016. Novel methods to select environmental variables in MaxEnt: A case study using invasive crayfish. Ecological Modelling, 341: 5–13. https://doi.org/10.1016/j.ecolmodel.2016.09.019.10.1016/j.ecolmodel.2016.09.019
DOI: https://doi.org/10.2478/hppj-2019-0008 | Journal eISSN: 2732-656X | Journal ISSN: 1791-3691
Language: English
Page range: 78 - 90
Submitted on: Apr 11, 2018
Accepted on: Mar 2, 2019
Published on: Jul 30, 2019
Published by: Benaki Phytopathological Institute
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2019 A.R. Salvacion, T.C. Solpot, C.J.R. Cumagun, I.B. Pangga, D.B. Magcale-Macandog, P.C.Sta. Cruz, R.B. Saludes, E.A. Aguilar, published by Benaki Phytopathological Institute
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.