References
- Almeland S. K., Mukha T., Bensow R. E. (2021) An improved air entrainment model for stepped spill-ways, Appl. Math. Model., 100, 170–191.
- Aureli F., Maranzoni A., Mignosa P., Ziveri C. (2008) A weighted surface-depth gradient method for the numerical integration of the 2D shallow-water equations with topography, Adv. Water Resour., 31(7), 962–974.
- Bashforth F., Adams J. C. (1883) An Attempt to Test the Theories of Capillary Action by Comparing the Theoretical and Measured Forms of Drops of Fluid, with an Explanation of the Method of Integration Employed in Constructing the Tables which Give the Theoretical Forms of Such Drops, Cambridge University Press, Cambridge, UK, 18–19.
- Bayon A., Toro J. P., Bombardelli F. A., Matos J., Lopez-Jimenez P. A. (2018) Influence of VOF technique, turbulence model and discretization scheme on the numerical simulation of the non-aerated, skimming flow in stepped spillways, J. Hydro-Environ. Res., 19, 137–149.
- Bickley W. G. (1941) Formulae for numerical differentiation, Math. Gaz., 25(263), 19–27, doi:10.2307/3606475.
- Boes R. M., Hager W. H. (2003a) Two-phase flow characteristics of stepped spillways, J. Hydraul. Eng., 129(9), 661–670.
- Boes R. M., Hager W. H. (2003b) Hydraulic design of stepped spillways, J. Hydraul. Eng., 129(9), 671–679.
- Bombardelli F. A., Meireles I., Matos J. (2011) Laboratory measurements and multi-block numerical simulations of the mean flow and turbulence in the non-aerated skimming flow region of steep stepped spillways, Environ. Fluid Mech., 11(3), 263–288.
- Boussinesq J. (1877) Essai Sur la Théorie des Eaux Courantes [Essay on the Theory of Water Flow], Mémoires Présentés par Divers Savants à l’Académie des Sciences, Paris, 23(1), 1–680 [in French].
- Castro A. M., Li J., Carrica P. M. (2016) A mechanistic model of bubble entrainment in turbulent free-surface flows, Int. J. Multiph. Flow, 86, 35–55.
- Chanson H. (1994) Drag reduction in open-channel flow by aeration and suspended load, J. Hydraul. Res., 32(1), 87–101.
- Chanson H. (2013) Advective diffusion of air bubbles in turbulent water flows, In: Fluid Mechanics of Environmental Interfaces, Taylor and Francis, Leiden, The Netherlands, Gualtieri, C. and Mihailovic, D. T. (eds.), 2nd ed., Chapter 7, 181–219.
- Chinnarasri C., Wongwises S. (2004) Flow regimes and energy loss on chutes with upward inclined steps, Can. J. Civ. Eng., 31, 870–879.
- Comolet R. (1979) Sur le Mouvement d’une bulle de gaz dans un liquide [Gas bubble motion in a liquid medium], La Houille Blanche, 65(1), 31–42 [in French].
- Ferziger J. H., Peric M. (2002) Computational Methods for Fluid Dynamics, 3rd rev. ed., Springer-Verlag Berlin Heidelberg: New York, NY, USA.
- Haberman W. L., Morton R. K. (1953) An Experimental Investigation of the Drag and Shape of Air Bubbles Rising in Various Liquids, Report 802, Armed Services Technical Information Agency, Dayton, OH, USA.
- Hansen K. D., Fitzgerald T. J. (2016) Performance of RCC used for overtopping protection and spill-ways, Proceedings of the 2nd International Seminar on Dam Protection against Overtopping, Fort Collins, CO, USA, 7–9 Sept., 1–11.
- Harten A., Lax P. D., van Leer B. (1983) On upstream differencing and Godunov-type scheme for hyperbolic conservation laws, SIAM Rev. Soc. Ind. Appl. Math., 25(1), 35–61.
- Hirsch C. (2007) Numerical Computation of Internal and External Flows: Vol. 1 Fundamentals of Computational Fluid Dynamics, 2nd ed., Elsevier: Oxford, UK.
- Hirt C. W. (2003) Modeling turbulent entrainment of air at a free surface, Technical Note 61 (FSI-03-TN61), Flow Science Incorporated, Santa Fe, NM, USA.
- Hunt S. L., Kadavy K. C., Hanson G. J. (2014) Simplistic design methods for moderate-sloped stepped chutes, J. Hydraul. Eng., 140(12), doi:10.1061/(ASCE)HY.1943-7900.0000938.
- Hunt S. L., Kadavy K. C., Wahl T. L., Moses D. W. (2022) Physical modeling of beveled-face stepped chute, Water, 14(3), doi:10.3390/w14030365.
- Ishii M., Hibiki T. (2011) Thermo-Fluid Dynamics of Two-Phase Flow, 2nd ed., Springer Science and Business Media, LLC: New York, NY, USA.
- Jones W. P., Launder B. (1972) The prediction of laminarization with a two-equation model of turbulence, Int. J. Heat Mass Transf., 15, 301–314.
- Kobus H. (1991) Introduction to air-water flows, In: Air Entrainment in Free-Surface Flows, IAHR Hydraulic Structures Design Manual No. 4, Hydraulic Design Considerations, Wood, I. R. (ed.), Balkema, Rotterdam, The Netherlands, 1–28.
- LeVeque R. J. (2004) Finite-Volume Methods for Hyperbolic Problems, Cambridge University Press: Cambridge, UK.
- Lopes P., Leandro J., Carvalho R. F. (2017) Self-aeration modeling using a sub-grid volume of fluid model, Int. J. Nonlinear Sci. Numer. Simul., 18(7–8), 559–574.
- Ma J., Oberai A. A., Drew D. A., Lahey R. T., Hyman M. C. (2011) A comprehensive sub-grid air entrainment model for RANS modeling of free-surface bubbly Flows, J. Comput. Multiph. Flows, 3(1), 41–56.
- Megh Raj K. C., Crookston B. (2024) A laboratory study on the energy dissipation of a beveled-face stepped spillway for embankment dam applications, Proceedings of the 10th International Symposium on Hydraulic Structures, Zürich, Switzerland, 17–19 June, 530–537.
- Rastogi A. K., Rodi W. (1978) Prediction of heat and mass transfer in open channels, J. Hydraul. Div., 104(HY3), 397–420.
- Relvas A. T., Pinheiro A. N. (2008) Inception point and air concentration in flows on stepped chutes lined with wedge-shaped concrete blocks, J. Hydraul. Eng., 134(8), 1042–1051.
- Rutschmann P., Volkart P., Wood I. R. (1986) Air entrainment at spillway aerators, Proceedings of the 9th Australasian Fluid Mechanics Conference, Auckland, New Zealand, 8–12 Dec., 350–353.
- Sene K. J. (1988) Air entrainment by plunging jets, Chem. Eng. Sci., 43(10), 2615–2623.
- Souders D. T., Hirt C. W. (2004) Modeling entrainment of air at turbulent free surfaces, Proceedings of World Water and Environmental Resources Congress, Salt Lake City, UT, USA, 27 June–1 July, 1–10.
- Straub L. G., Anderson A. G. (1960) Self-aerated flow in open channels, Trans. ASCE, 125(1), 456–481.
- Wahl T. L., Falvey H. T. (2022) SpillwayPro: Integrated water surface profile, cavitation, and aerated flow analysis for smooth and stepped chutes, Water, 14(8) doi:10.3390/w14081256.
- Yakhot V., Orszag S. A. (1986) Renormalization group analysis of turbulence. I. Basic theory, J. Sci. Comput., 1(1), 3–51.
- Yamamoto S., Daiguji H. (1993) Higher-order accurate upwind schemes for solving the compressible Euler and Navier-Stokes equations, Comput. Fluids, 22(2–3), 259–270.
- Zabaleta F., Márquez-Damián S., Bombardelli F. A. (2023) A novel three-phase mixture approach for the numerical modeling of self-aerated flows, Comput. Methods Appl. Mech. Engrg., 408, doi:10.1016/j.cma.2023.115958.
- Zerihun Y. T. (2016) Modeling free-surface flow with curvilinear streamlines by a non-hydrostatic model, J. Hydrol. Hydromech., 64(3), 281–288.
- Zerihun Y. T. (2017a) A numerical study of non-hydrostatic shallow flows in open channels, Arch. Hydro-Eng. Environ. Mech., 64(1), 17–35.
- Zerihun Y. T. (2017b) A non-hydrostatic depth-averaged model for hydraulically steep free-surface flows, Fluids, 2(4), doi:10.3390/fluids2040049.
- Zerihun Y. T. (2019) On steady two-dimensional free-surface flows with spatially-varied discharges, Slovak J. Civ. Eng., 27(3), 1–11.
- Zerihun Y. T. (2021) Non-hydrostatic transitional open-channel flows from a supercritical to a subcritical state, Slovak J. Civ. Eng., 29(2), 39–48.
- Zerihun Y. T. (2024) Numerical modeling of sediment transport and bed evolution in nonuniform open-channel flows, Arch. Hydro-Eng. Environ. Mech., 71(1), 1–26.
- Zhang G., Chanson H. (2018) Effects of step and cavity shapes on aeration and energy dissipation performances of stepped chutes, J. Hydraul. Eng., 144(9), doi:10.1061/(ASCE)HY.1943-7900.0001505.