Have a personal or library account? Click to login
Theoretical Aspects of Turbulent Flows in Pipeline Cover

References

  1. Altshul A. D. (1982) Gidravlicheskie soprotivleniya [Hydraulic Resistances], Moscow, Nedra, 224 p. (in Russian).
  2. Bolshakov V. A., Konstantinov Yu. M., Popov V. N. et al (1984) Spravochnik po gidravlike [Handbook of Hydraulics], Kyiv, Vyshcha shkola, 343 p. (in Russian).
  3. Brkić D. (2016) A note on explicit approximations to Colebrook’s friction factor in rough pipes under highly turbulent cases, International Journal of Heat and Mass Transfer, 93, 513–515, URL: https://dx.doi.org/10.1016/j.ijheatmasstransfer.2015.08.109.
  4. Choo Y.-M., Kim J.-G., Park S.-H. (2021) A Study on the Friction Factor and Reynolds Number Relationship for Flow in Smooth and Rough Channels, Water, 13 (12), 1714 URL: https://doi.org/10.3390/w13121714.
  5. Colebrook C. F. (1939) Turbulence flow in pipes with particular Reference to the transition region between the smooth and rough pipe lines, Journal of Institute of Civil Engineering, 11, 133–156, https://dx.doi.org/10.1680/ijoti.1939.13150.
  6. Dutta P., Nandi N. (2015) Effect of Reynolds Number and Curvature Ratio on Single Phase Turbulent Flow in Pipe Bends, Mechanics and Mechanical Engineering, 19 (1), 5–16.
  7. Fluid flow friction loss – Hazen-Williams coefficients, Retrieved April 18, 2023, from. URL: https://www.engineeringtoolbox.com/hazen-williams-coecients-d−798.html.
  8. Gaev E. A. (2014) Lyudvig Prandtl v gidromekhanike proshlogo i budushchego. [Ludwig Prandl in fluid mechanics past and future], Applied hydromechanics, 16 (2), 3–16.
  9. Kalenik M., Chalecki M., Wichowski P. (2020) Real Values of Local Resistance Coefficients during Water Flow through Welded Polypropylene T-Junctions, Water, 12 (3), 895, https://doi.org/10.3390/w12030895.
  10. Khlapuk M. M., Moshynskyi V. S., Bezusiak O. V., Volk L. R. (2019) Do rozvytku teorii rukhu potoku v truboprovodakh pry turbulentnomu rezhymi [Regarding the Development of the Theory of Flow in Pipelines Under Turbulent Regime], Visnyk NUVHP [Bulletin of NUWEE], 3 (87), 3–18 (in Ukrainian).
  11. Khlapuk M. M., Moshynskyi V. S., Bezusiak O. V., Volk L. R. (2020) Doslidzhennia profiliu oserednenoi shvydkosti potoku v truboprovodakh pry turbulentnomu rezhymi v oblasti hidravlichno hladkoho oporu [Study of the Flow Averaged Velocity Profile in Pipelines under Turbulent Regime in the Sphere of Hydraulic Smooth Resistance], Visnyk NUVHP [Bulletin of NUWEE], 1 (89), 3-11 (in Ukrainian).
  12. Konstantinov Yu. M., Hizha O. O. (2002) Tekhnichna mechanika ridyn ta hazu [Technical Mechanics of Fluids and Gases] Pidruchnyk [Textbook], Kyiv, Vyshcha shkola, 277 p. (in Ukrainian).
  13. Meier G. E .A. (Ed.) (2000) Ludwig Prandtl. Ein Fuehrer in der Stroemungslehre. Biographische Artikel zum Werk Ludwig Prandtls [Ludwig Prandtl, a Leader in Fluid Dynamics. Biographical Articles on the Work of Ludwig Prandtl], Fr. Vieweg and Sohn Verlag, Braunschweig/Wiesbaden, 220 p. (in German).
  14. McKoen B. J. (2005) A new friction factor relationship for fully developed pipe flow, B. J. McKoen, M. V. Zagarola, A. J. Smits, J. Fluid Mech., 538, 429–443.
  15. Pérez Pupo J. R., Navarro-Ojeda M. N., Pérez-Guerrero J. N., Batista-Zaldívar M. A. (2019) On the explicit expressions for the determination of the friction factor in turbulent regime, Revista Mexicana De Ingeniería Química, 19 (1), 313–334, URL: https://doi.org/10.24275/rmiq/fen497.
  16. Shaikh M. M., Massan S.-ur-R., Wagan A. I. (2015) A new explicit approximation to Colebrook’s friction factor in rough pipes under highly turbulent cases, International Journal of Heat and Mass Transfer, 88, 538–543.
  17. Shevelyov F. A. (1953) Issledovanie osnovnykh gidravlicheskikh zakonomernostei turbulentnogo dvizheniya v trubakh [Investigation of the Basic Hydraulic Regularities of Turbulent Pipe Flow], Moscow, Stroyizdat, 208 p. (in Russian).
  18. Tkachuk O. A. (2022) Hidravlichni rozrakhunky truboprovidnykh system vodopostachannia ta vodovidvedennia: Monohraphiia [Hydraulic Calculations of Pipeline Systems for Water Supply and Drainage: Monograph], Rivne, NUWEE, 183 p. (in Ukrainian).
  19. Wichowski P., Kalenik M., Lal A., Morawski D., Chalecki M. (2021) Hydraulic and Technological Investigations of a Phenomenon Responsible for Increase of Major Head Losses in Exploited Cast-Iron Water Supply Pipes, Water, 13 (11), 1604, http://doi.org/10.3390/w13111604 URL: https://www.mdpi.com/2073-4441/13/11/1604.
DOI: https://doi.org/10.2478/heem-2023-0010 | Journal eISSN: 2300-8687 | Journal ISSN: 1231-3726
Language: English
Page range: 141 - 157
Submitted on: Aug 23, 2023
Published on: Jan 20, 2024
Published by: Polish Academy of Sciences, Institute of Hydro-Engineering
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2024 Oleksandr A. Tkachuk, Ievgenii G. Gerasimov, Olha V. Shevchuk, published by Polish Academy of Sciences, Institute of Hydro-Engineering
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.