Have a personal or library account? Click to login
Mineral Pumice Efficiency in Wastewater Treatment in Dairy Industries Cover

Mineral Pumice Efficiency in Wastewater Treatment in Dairy Industries

Open Access
|Dec 2023

References

  1. Akansha J., Nidheesh P. V., Gopinath A., Anupama K. V., Kumar M. S. (2020) Treatment of dairy industry wastewater by combined aerated electrocoagulation and phytoremediation process, Chemo-sphere, 253, 126652, https://doi.org/10.1016/j.chemosphere.2020.126652.
  2. Akbal F.Ö, Akdemir N., Onar A. N. (2000) FT-IR spectroscopic detection of pesticide after sorption onto modified pumice, Talanta, 53 (1), 131–135. https://doi.org/10.1016/S0039-9140(00)00380-5.
  3. Cusido J. A., Soriano C. (2011) Valorization of pellets from municipal WWTP sludge in lightweight clay ceramics, Waste Management, 31.
  4. Eikebrokk B., Saltnes T. (2002), NOM removal from drinking water by chitosan coagulation and filtration through lightweight expanded clay aggregate filters, Journal of Water Supply Research and Technology–AQUA, 51 (6), 323–332. https://doi.org/10.2166/aqua.2002.0029.
  5. EPA (1977) Process design manual for land treatment of municipal wastewater, Report 625/1-77-008. Us Environment Protection Agency, Cincinnati, Ohio.
  6. Imran A., Mohd A., Tabrez A. (2012) Low cost adsorbents for the removal of organic pollutants from wastewater, Environmental Management, 113, 170–183.
  7. Naddafi K., Saeedi R., Mohebb M. R. (2005), Bio-sorption and removal of heavy metals from water and wastewater, Water and Environment Journal, 63, 33–39.
  8. Nkansah M. A., A. A. Christy, T. Barth, G. W. Francis (2012) The use of lightweight expanded clay aggregate (LECA) as sorbent for PAHs removal from water, Hazardous Materials, 217–218, 360–365. https://doi.org/10.1016/j.jhazmat.2012.03.038.
  9. de Rozari P., Krisnayanti D. S., Yordanis K. V., Atie M. R. R. (2021) The use of pumice amended with sand media for domestic wastewater treatment in vertical flow constructed wetlands planted with lemongrass (Cymbopogon citratus), Heliyon, 7 (7). https://doi.org/10.1016/j.heliyon.2021.e07423.
  10. Sharifnia S., Khadivi M. A., Shojaeimehr T., Shavisi Y. (2016) Characterization, isotherm and kinetic studies for ammonium ion adsorption by light expanded clay aggregate (LECA), Journal of Saudi Chemical Society, 20 (1), S342–S351. https://doi.org/10.1016/j.jscs.2012.12.003.
  11. Tong S., Zhang S., Zhao Y., Feng C., Hu W., Chen N. (2021) Hybrid zeolite-based ion-exchange and sulfur oxidizing denitrification for advanced slaughterhouse wastewater treatment, Journal of Environmental Sciences, 113, 219–230.
  12. Toscano G., Caristi C., Cimino G. (2008) Sorption of heavy metal from aqueous solution by volcanic ash, Comptes Rendus Chimie, 11 (6–7) 765–771. https://doi.org/10.1016/j.crci.2007.11.010.
  13. Yavuz M., Gode F., Pehlivan E., Ozmert S., Sharma Y. C. (2008) An economic removal of Cu2+ and Cr3+ on the new adsorbents: pumice and 533 polyacrylonitrile/pumice composite, Chem. Eng. J., 137 (3), 453–461. https://doi.org/10.1016/j.cej.2007.04.030.
DOI: https://doi.org/10.2478/heem-2023-0009 | Journal eISSN: 2300-8687 | Journal ISSN: 1231-3726
Language: English
Page range: 129 - 139
Submitted on: Jun 6, 2023
Published on: Dec 26, 2023
Published by: Polish Academy of Sciences, Institute of Hydro-Engineering
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2023 Hamid Raeisi Vanani, Kaveh Ostad-Ali-Askari, published by Polish Academy of Sciences, Institute of Hydro-Engineering
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.