Have a personal or library account? Click to login
Numerical Modeling of Compound Channels for Determining Kinetic Energy and Momentum Correction Coefficients Using the OpenFOAM Software Cover

Numerical Modeling of Compound Channels for Determining Kinetic Energy and Momentum Correction Coefficients Using the OpenFOAM Software

Open Access
|Jun 2022

References

  1. Al-Khatib I. A., Abu-Hassan H. M. Abaza K. A. (2013) Development of empirical regression-based models for predicting mean velocities in asymmetric compound channels, Flow Measurement and Instrumentation, 33, 77–87.10.1016/j.flowmeasinst.2013.04.013
  2. An K., Fung J. C. H. (2018) An improved SST k − ω model for pollutant dispersion simulations within an isothermal boundary layer, Journal of Wind Engineering and Industrial Aerodynamics, 179, 369–384.10.1016/j.jweia.2018.06.010
  3. Boussinesq J. (1877) On the theory of flowing waters, Paris.
  4. Chow V. T. (1951) Open-Channel Hydraulics, McGrawHill, New York.
  5. Coriolis G. (1836) On the Backwater-curve equation and the corrections to bBe introduced to account for the difference of the velocities at different points on the same cross section, Annales des Ponts et Chaussées, 11 (1), 314–335.
  6. Fernandes J. N. (2013) Compound channel uniform and non-uniform flows with and without vegetation in the floodplain, Doctoral dissertation.
  7. French R. H. (1987) Open-Channel Hydraulics, McGrawHill, Singapore, 2nd edition.
  8. Ghanbari-Adivi E. (2020) Compound Channel’s Cross-section Shape Effects on the Kinetic Energy and Momentum Correction Coefficients, Archives of Hydro-Engineering and Environmental Mechanics, 67 (1–4), 55–71, https://doi.org/10.1515/heem-2020-0004.10.1515/heem-2020-0004
  9. Hellsten A. (1998) Some improvements in Menter’s k-omega SST turbulence model, 29th AIAA, Fluid Dynamics Conference, p. 2554.
  10. Knight D. W., Demetriou J. D., Hamed M. E. (1984) Stage discharge relationships for compound channels, [In:] Smith KVH (ed) Channels and channel control structures, Springer, Berlin, pp. 445–459.
  11. Manokaran K., Ramakrishna M., Jayachandran T. (2020) Application of flux vector splitting methods with SST turbulence model to wall-bounded flows, Computers & Fluids, 208, p. 104611, https://doi.org/10.1016/j.compfluid.2020.104611.10.1016/j.compfluid.2020.104611
  12. Menter F. R. (1992) Influence of freestream values on k − ω turbulence model predictions, AIAA Journal, 30 (6), 1657–1659.10.2514/3.11115
  13. Menter F. R. (1993) Zonal two-equation k − ω turbulence model for aerodynamic flows, AIAA Paper 1993-2906.10.2514/6.1993-2906
  14. Menter F. R. (2009) Review of the shear-stress transport turbulence model experience from an industrial perspective, International Journal of Computational Fluid Dynamics, 23(4), 305–316.10.1080/10618560902773387
  15. Menter F. R., Kuntz M., Langtry R. (2003) Ten years of industrial experience with the SST turbulence model, Turbulence, heat and mass transfer, 4 (1), 625–632.
  16. Mohanty P. K., Khatua K. K. (2014) Estimation of discharge and its distribution in compound channels, Journal of Hydrodynamics, 26 (1), 144–154.10.1016/S1001-6058(14)60017-2
  17. Penttinen O., Yasari E., Nilsson H. (2011) A pimplefoam tutorial for channel flow, with respect to different LES models, Practice Periodical on Structural Design and Construction, 23 (2), 1–23.
  18. Piomelli U. (1993) High Reynolds number calculations using the dynamic subgrid-scale stress model, Physics of Fluids A: Fluid Dynamics, 5 (6), 1484–1490.10.1063/1.858586
  19. Rusche H. (2002) Computational Fluid Dynamics of Dispersed Two-Phase Flows at High Phase Fractions, Ph.D. thesis, Imperial College, University of London.
  20. Sagaut P. (2006) Large Eddy Simulation for Incompressible Flows: An Introduction, Second Edition, Verlag Berlin Heidelberg New York: Springer Science & Business Media.
  21. Shiono K., Rameshwaran P. (2015) Mathematical modeling of Bed shear stress and depth averaged velocity for emergent vegetation on floodplain in compound channel, E-Proceedings of the 36th IAHR World Congress 28 June –3 July, 2015, The Hague, the Netherlands.
  22. Versteeg H., Malalasekera W. (2007) An Introduction to Computional Fluid Dynamics: The Finite Volume Method, Second Edition, England: Pearson Education Limited.
  23. Warner J. C., Sherwood C. R., Arango H. G., Signell R. P. (2005) Performance of four turbulence closure models implemented using a generic length scale method, Ocean Modelling, 8 (1–2), 81–113.10.1016/j.ocemod.2003.12.003
  24. White F. M. (1979) Fluid mechanics, Google Scholar, 367–375.
  25. Zahiri A. P., Roohi E. (2019) Anisotropic minimum-dissipation (AMD) subgrid-scale model implemented in OpenFOAM: verification and assessment in single-phase and multi-phase flows, Computers & Fluids, 180, 190–205, https://doi.org/10.1016/j.compfluid.2018.12.011.10.1016/j.compfluid.2018.12.011
DOI: https://doi.org/10.2478/heem-2022-0003 | Journal eISSN: 2300-8687 | Journal ISSN: 1231-3726
Language: English
Page range: 27 - 43
Submitted on: Sep 7, 2021
Accepted on: May 2, 2022
Published on: Jun 6, 2022
Published by: Polish Academy of Sciences, Institute of Hydro-Engineering
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2022 Nariman Mehranfar, Elham Ghanbari-Adivi, published by Polish Academy of Sciences, Institute of Hydro-Engineering
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.