Have a personal or library account? Click to login
Flood Frequency Analysis and Hydraulic Design of Bridge at Mashan on River Kunhar Cover

Flood Frequency Analysis and Hydraulic Design of Bridge at Mashan on River Kunhar

Open Access
|May 2022

References

  1. Amin M. T., Rizwan M., Alazba A. A. (2016) A best-fit probability distribution for the estimation of rainfall in northern regions of Pakistan., Open Life Sciences, 11 (1), 432–440.10.1515/biol-2016-0057
  2. Birkland T. A., Burby R. J., Conrad D., Cortner H., Michener W. K. (2003) River ecology and flood hazard mitigation, Natural Hazards Review, 4 (1), 46–54.10.1061/(ASCE)1527-6988(2003)4:1(46)
  3. Bronstert A. (2003) Floods and climate change: interactions and impacts, Risk Analysis: An International Journal, 23 (3), 545–557.10.1111/1539-6924.0033512836847
  4. Charley W. J. (1988) The estimation of rainfall for flood forecasting using radar and rain gauge data (No. HEC-TP-122), HYDROLOGIC ENGINEERING CENTER DAVIS CA.10.21236/ADA200802
  5. Cook A. C. (2008) Comparison of one-dimensional HEC-RAS with two-dimensional FESWMS model in flood inundation mapping, Graduate School, Purdue University, West Lafayette.
  6. De Silva M. M. G. T., Weerakoon S. B., Herath S., Ratnayake U. R., Mahanama S. (2012) Flood Inundation Mapping along the Lower Reach of Kelani River Basin under the Impact of Climatic Change, Engineer, 45 (02), 23—29.10.4038/engineer.v45i2.6938
  7. Duvvuri S., Narasimhan B. (2013) Flood inundation mapping of thamiraparani river basin using hec-geo ras and swat, International Journal of Engineering Research and Technology, 2 (7), 1408–1420.
  8. Fosu C., Forkuo E. K., Asare M. Y. (2012) River Inundation and Hazard Mapping – a Case Study of Susan River – Kumasi, Journal of Global Geospatial Conference, Quebec City, Canada.
  9. Graham D. N., Angel E. A. (2001) Flexible, integrated watershed modeling with MIKE SHE, Watershed models, 849336090, 245–272.
  10. Gunasekara I. P. A. (2008) Flood hazard mapping in the lower reach of Kelani river, Engineer, XXXXI (5), 149–154.10.4038/engineer.v41i5.7115
  11. Hicks F., Peacock T. (2005) Suitability of HEC-RAS for Flood Forecasting., Canadian Water Resources Journal, 30 (2), 159–174.10.4296/cwrj3002159
  12. Horritt M., Bates P. (2002) Evaluation of 1D and 2D numerical models for predicting river flood inundation, Journal of Hydrology, 268 (1–4), 87–99.10.1016/S0022-1694(02)00121-X
  13. Jalali-Rad R. (2002) Flood zoning of Tehran urban watershed using GIS, Master’s thesis, Tarbiat Modares University.
  14. Kute S., Kakad S., Bhoye V., Walunj A. (2014) Flood modeling of river Godavari using HEC-RAS, Int J Res Eng Technol, 3 (09), 81–87.10.15623/ijret.2014.0321017
  15. Maidment D. R., Tate E. C. (1999) Floodplain mapping using HEC-RAS and ArcView GIS, Doctoral dissertation, Center for Research in Water Resources, the University of Texas at Austin).
  16. Malik M., Ahmad F. (2014) Flood inundation Mapping and Risk Zoning of the Sawat River Pakistan Using HEC—RAS Model, ISSN, 3, 45.
  17. Millington N., Das S., Simonovic S. P. (2011) The comparison of GEV, log-Pearson type 3 and Gumbel distributions in the Upper Thames River watershed under global climate models, Water Resources Research Report, 40.
  18. Parker D., Tunstall S., Wilson T. (2005) Socio-economic benefits of flood forecasting and warning, Flood Hazard Research Centre, Middlesex University, Queensway, Enfield, EN3 4SF, London, UK.
  19. Pathan A. I. Agnihotri P. G. (2021) Application of new HEC-RAS version 5 for 1D hydrodynamic flood modeling with special reference through geospatial techniques: a case of River Purna at Navsari, Gujarat, India, Modeling Earth Systems and Environment, 7 (2), 1133–1144.10.1007/s40808-020-00961-0
  20. Saifullah M., Adnan M., Zaman M., Wałega A., Liu S., Khan M. I., Muhammad S. (2021) Hydrological Response of the Kunhar River Basin in Pakistan to Climate Change and Anthropogenic Impacts on Runoff Characteristics, Water, 13, 3163.10.3390/w13223163
  21. Salajegheh A., Bakhshaei M., Chavoshi S., Keshtkar A. R., Najafi Hajivar M. (2009) Floodplain mapping using HEC-RAS and GIS in semi-arid regions of Iran, Desert, 14 (1), 83–93.
  22. Schreider S. Y., Whetton P. H., Jakeman A. J., Pittock A. B. (1997) Runoff modeling for snow-affected catchments in the Australian alpine region, eastern Victoria., Journal of Hydrology, 200 (1–4), 1–23.
  23. Tan K. S., Chiew F. H. S., Grayson R. B., Scanlon P. J., Siriwardena L. (2005) Calibration of a daily rainfall-runoff model to estimate high daily flows, MODSIM 2005 International Congress on Modelling and Simulation, Melbourne.
  24. Ti Z., Zhang M., Li Y., Wei K. (2019) Numerical study on the stochastic response of a long-span sea-crossing bridge subjected to extreme nonlinear wave loads, Engineering Structures, 196, 109287.10.1016/j.engstruct.2019.109287
  25. Toth E., Brath A., Montanari A. (2000) Comparison of short-term rainfall prediction models for real-time flood forecasting, Journal of hydrology, 239 (1–4), 132–147.10.1016/S0022-1694(00)00344-9
  26. Tsay J. Y. (2021) Feasibility Study of Super-Long Span Bridges Considering Aerostatic Instability by a Two-Stage Geometric Nonlinear Analysis, International Journal of Structural Stability and Dynamics, 21 (03), 2150033.10.1142/S0219455421500334
  27. Wangpimool W., Pongput K., Supriyasilp T., Sakolnakhon K. P., Vonnarart O. (2013) Hydrological Evaluation with SWAT Model and Numerical Weather Prediction for Flash Flood Warning System in Thailand, Journal of Earth Science and Engineering, 3 (6), 349.
  28. Yadi S., Suhendro B., Priyosulistyo H., Aminullah A. (2019) Dynamic response of long-span bridges subjected to nonuniform excitation: a state-of-the-art review, MATEC Web of Conferences, Vol. 258, p. 05017, EDP Sciences.10.1051/matecconf/201925805017
  29. Yan L., Xiong L., Guo S., Xu C. Y., Xia J., Du T. (2017) Comparison of four nonstationary hydrologic design methods for changing environment, Journal of Hydrology, 551, 132–150.10.1016/j.jhydrol.2017.06.001
  30. Zaid M., Yazdanfar Z., Chowdhury H., Alam F. (2019) A review of the methods used to reduce the scouring effect of the bridge pier, Energy Procedia, 160, 45–50.10.1016/j.egypro.2019.02.117
DOI: https://doi.org/10.2478/heem-2022-0001 | Journal eISSN: 2300-8687 | Journal ISSN: 1231-3726
Language: English
Page range: 1 - 12
Submitted on: Aug 24, 2021
Accepted on: Dec 3, 2021
Published on: May 22, 2022
Published by: Polish Academy of Sciences, Institute of Hydro-Engineering
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2022 Khuram Riaz, Hafiz Muhammad Shahzad Aslam, Muhammad Waseem Yaseen, Hafiz Haseeb Ahmad, Alireza Khoshkonesh, Sadaf Noshin, published by Polish Academy of Sciences, Institute of Hydro-Engineering
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.