Have a personal or library account? Click to login
Artificial Neural Network for Estimation of Local Scour Depth Around Bridge Piers Cover

Artificial Neural Network for Estimation of Local Scour Depth Around Bridge Piers

Open Access
|Jan 2022

References

  1. Amini A., Hamidi S., Shirzadi A., Behmanesh J., Akib S. (2020) Efficiency of Artificial Neural Networks in Determining Scour Depth at Composite Bridge Piers, International Journal of River Basin Management, 19 (3), 327–333, https://doi.org/10.1080/15715124.2020.1742138.10.1080/15715124.2020.1742138
  2. Azmathullah H. M., Deo M. C., Deolalikar P. B. (2005) Neural networks for estimation of scour downstream of a ski-jump bucket, Journal of Hydraulic Engineering, 131 (10), 898–908, https://doi.org/10.1061/(ASCE)0733-9429(2005)131:10(898).10.1061/(ASCE)0733-9429(2005)131:10(898)
  3. Bateni S. M., Borghei S. M., Jeng D. S. (2007) Neural network and neuro-fuzzy assessments for scour depth around bridge piers, Engineering Applications of Artificial Intelligence, 20 (3), 401–414, https://doi.org/10.1016/j.engappai.2006.06.012.10.1016/j.engappai.2006.06.012
  4. Benedict S., Caldwell A. (2014) A pier-scour database—2,427 field and laboratory measurements of pier scour, doi:10.3133/ds845.10.3133/ds845
  5. Breuser H. N. C., Nicollet G., Shen H. W. (1977) Local scour around cylindrical piers, Journal of Hydraulic Research, 15 (3), 211–252.10.1080/00221687709499645
  6. Chabert J., Engeldinger P. (1956) Etude des a ouillements autour des piles de ponts, Chatou, France: Laboratoire National d’Hydraulique.
  7. Cheremisino P. N., Cheremisino N. P., Cheng Su Ling (1987) Civil Engineering Practice, Technomic, Lancaster, Pa.
  8. Chee R. K. W. (1982) Live-bed scour at bridge piers, Publication of Auckland University, New Zealand, (290), http://worldcat.org/issn/01110136.
  9. Chiew Y. M. (1984) Local Scour at Bridge Piers, Report No. 355, School of Engg., The Univ. of Auckland, New Zealand.
  10. Choi S. U., Cheong S. (2006) Prediction of local scour around bridge piers using artificial neural networks 1, JAWRA Journal of the American Water Resources Association, 42 (2), 487–494, https://doi.org/10.1111/j.1752-1688.2006.tb03852.x.10.1111/j.1752-1688.2006.tb03852.x
  11. Choi S. U., Choi B., Lee S. (2017) Prediction of local scour around bridge piers using the ANFIS method, Neural Computing and Applications, 28 (2), 335-40-344, https://doi.org/10.1007/s00521-015-2062-1.10.1007/s00521-015-2062-1
  12. Dey S., Bose S. K., Sastry G. L. (1995) Clear water scour at circular piers: a model, Journal of Hydraulic Engineering, 121 (12), 869–876, https://doi.org/10.1061/(ASCE)0733-9429(1995)121:12(869).10.1061/(ASCE)0733-9429(1995)121:12(869)
  13. Dogan E., Ates A., Yilmaz E. C., Eren B. (2008) Application of artificial neural networks to estimate wastewater treatment plant inlet biochemical oxygen demand, Environmental progress, 27 (4), 439–446, https://doi.org/10.1002/ep.10295.10.1002/ep.10295
  14. Dolling O. R., Varas E. A. (2002) Artificial neural networks for streamflow prediction, J. Hydraul. Res., 40 (50), 547–554, https://doi.org/10.1080/00221680209499899.10.1080/00221680209499899
  15. Ettema R. (1976) Influence of bed gradation on local scour: New Zealand, University of Auckland, School of Engineering (No. 124), Report.
  16. Ettema R. (1980) Scour at bridge piers, Report No. 215, School of Engineering, University of Auckland, Auckland, New Zealand.
  17. Ettema R., Kirkil G., Muste M. (2006) Similitude of large-scale turbulence in experiments on local scour at cylinders, Journal of Hydraulic Engineering, 132 (1), 33–40, https://doi.org/10.1061/(ASCE)0733-9429(2006)132:1(33).10.1061/(ASCE)0733-9429(2006)132:1(33)
  18. Fletcher D., Goss E. (1993) Forecasting with neural networks: an application using bankruptcy data, Information & Management, 24 (3), 159–167.10.1016/0378-7206(93)90064-Z
  19. Graf W. H. (1995) Local scour around piers, Annual Report, Laboratoire de Recherches Hydrauliques, Ecole Polytechnique Federale de Lausanne, Lausanne, Switzerland, B.33.1–B.33.8.
  20. Guven A., Azamathulla H. M., Gunal M. (2012) Predicting wave-induced scour around a circular pile, In: Proceedings of the Institution of Civil Engineers-Maritime Engineering, 165 (1), 31–40, Thomas Telford Ltd, https://doi.org/10.1680/maen.2012.165.1.31.10.1680/maen.2012.165.1.31
  21. Hagan M., Beale M., Demuth H. (2009) Neural Network ToolboxTM User’s Guide, the Math Works, Inc, 6th edition, ISBN: 0-9717321-0-8.
  22. Hagan M. T., Demuth H. B., Beale M. H., Jesus O. (2002) Neural Network Design, ISBN: 978-0-971732-1-7, 2nd Edition.
  23. Hancu S. (1971) Sur le calcul des a ouillements locaux dams la zone des piles des ponts, Proceedings of the 14th IAHR Congress, Paris, France, vol. 3, International Association for Hydraulic Research, Delft, The Netherlands, 299–313.
  24. Haykin S. (1999) Neural networks—A comprehensive foundation, 2nd Ed., Prentice-Hall, N.J.
  25. Jain S. C., Fischer, E. E. (1979) Scour around circular bridge piers at high Froude numbers (No. FHWA-RD-79-104 Final Rpt.).
  26. Jeng D. S., Bateni S. M., Lockett E. (2005) Neural network assessment for scour depth around bridge piers, The University of Sydney.
  27. Khassaf S. I., Abdulwhab A. Q. (2016) Modeling of Local Scour Depth Around Bridge Piers Using Artificial Neural Network, Advances in Natural and Applied Sciences, 10 (11), 71–79.
  28. Khwairakpam P., Mazumdar A. (2009) Local scour around hydraulic structures, International Journal of Recent Trends in Engineering, 1 (6), 59.
  29. Laursen E. M., Toch A. (1956) Scour Around Bridge Piers and Abutments, Vol. 4, Ames, IA: Iowa Highway Research Board.
  30. McCulloch W. S., Pitts W. (1943) A logical calculus of the ideas immanent in nervous activity, Univ. Press.10.1007/BF02478259
  31. Melville B. W., Coleman S. E. (2000) Bridge scour, Water Resources Publications, LLC, Highlands Ranch, Colo.
  32. Melville B. W., Sutherland A. J. (1988) Design method for local scour at bridge piers, Journal of Hydraulic Engineering, 114 (10), 1210–1226.10.1061/(ASCE)0733-9429(1988)114:10(1210)
  33. Prasad R., Pandey A., Singh K. P., Singh V. P., Mishra R. K., Singh D. (2012) Retrieval of spinach crop parameters by microwave remote sensing with back propagation artificial neural networks: A comparison of different transfer functions, Advances in space research, 50 (3), 363–370, https://doi.org/10.1016/j.asr.2012.04.010.10.1016/j.asr.2012.04.010
  34. Richardson E.., Harrison L. J., Richardson J., Davis S. R. (1991) Evaluating scour at bridges, Federal Highway Administration Hydraulic Engineering Circular No. 18, Publication No. FHWA-IP-90-017, 105 p.
  35. Sarshari E., Mullhaupt P. (2015) Application of Artificial Neural Networks in Assessing The Equilibrium Depth of Local Scour Around Bridge Piers, International Conference on O shore Mechanics and Arctic Engineering, Vol. 56550, p. V007T06A061, American Society of Mechanical Engineers.10.1115/OMAE2015-42387
  36. Shen H. W., Schneider V. R., Karaki S. S. (1969) Local scour around bridge piers, Journal of the Hydraulics Division, 95 (HY6), 1919–1940.10.1061/JYCEAJ.0002197
  37. Shen H. W.(1971) Scour near piers, in: River mechanics, Vol. II. Chapter 23. Ft. Collins, Colo.
  38. Sheppard D. M., Demir H., Melville B. (2011) Scour at wide piers and long skewed piers, Washington, D.C., Transportation Research Board of the National Academies, NCHRP Report 682, 65 p.
DOI: https://doi.org/10.2478/heem-2021-0005 | Journal eISSN: 2300-8687 | Journal ISSN: 1231-3726
Language: English
Page range: 87 - 101
Submitted on: Jan 11, 2021
Accepted on: Aug 22, 2021
Published on: Jan 18, 2022
Published by: Polish Academy of Sciences, Institute of Hydro-Engineering
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2022 Ahmed Shakir Ali Ali, Mustafa Günal, published by Polish Academy of Sciences, Institute of Hydro-Engineering
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.