Have a personal or library account? Click to login
An example of fast old field succession in a traditionally managed rural landscape on the Slovenian Karst Cover

An example of fast old field succession in a traditionally managed rural landscape on the Slovenian Karst

Open Access
|Mar 2021

References

  1. Bartha, S. 2007: Composition, differentiation and dynamics in the forest steppe biome. In: Illyés, E., Bölöni, J. (eds.): Slope steppes, loess steppes and forest steppe meadows in Hungary. MTA ÖBKI, Budapest, pp. 194–210.
  2. Bartha, S., Meiners, S. J., Pickett, S. T. A. & Cadenasso, M. L. 2003: Plant colonization windows in a mesic old field succession. Applied Vegetation Science 6: 205–212. DOI: https://doi.org/10.1111/j.1654-109X.2003.tb00581.x10.1111/j.1654-109X.2003.tb00581.x
  3. Bartha, S., Campetella, G., Canullo, R., Bódis, J. & Mucina, L. 2004: On the importance of fine-scale spatial complexity in vegetation restoration. International Journal of Ecology and Environmental Sciences 30: 101–116.
  4. Bartha, S., Szentes, Sz., Horváth, A., Házi, J., Zimmermann, Z., Molnár, Cs., Dancza, I., Margóczi, K., Pál, R. W., Purger, D., Schmidt, D., Óvári, M., Komoly, C., Sutyinszki, Zs., Szabó, G., Csathó, A. I., Juhász, M., Penksza, K. & Molnár, Zs. 2014: Impact of mid-successional dominant species on the diversity and progress of succession in regenerating temperate grasslands. Applied Vegetation Science 17: 201–213. DOI: https://doi.org/10.1111/avsc.1206610.1111/avsc.12066
  5. Batalha, M. A., Pipenbaher, N., Bakan, B., Kaligarič, M., & Škornik, S. 2015: Assessing community assembly along a successional gradient in the North Adriatic Karst with functional and phylogenetic distances. Oecologia 178(4): 1205–1214. DOI: https://doi.org/10.1007/s00442-015-3295-510.1007/s00442-015-3295-525800875
  6. Breg Valjavec, M., Zorn, M. & Čarni, A. 2018: Human-induced land degradation and biodiversity of Classical Karst landscape: On the example of enclosed karst depressions (dolines). Land Degradation and Development 2018: 1–13. DOI: https://doi.org/10.1002/ldr.311610.1002/ldr.3116
  7. Čarni, A. & Kaligarič, M. 1991: Comparison of spontaneous reforestation in two formerly cultivated areas. Gortania 13: 77–85.
  8. Čarni, A., Košir, P., Karadžić, B., Matevski, V., Redžić, S. & Škvorc, Ž. 2009: Thermophilous deciduous forests in Southeastern Europe. Plant Biosystems 143: 1–13. DOI: https://doi.org/10.1080/1126350080263388110.1080/11263500802633881
  9. Čarni, A., Košir, P., Marinšek, A., Šilc, U. & Zelnik, I. 2007: Changes in structure, floristic composition and chemical soil properties in a succession of birch forests. Periodicum Biologorum 109: 13–20.
  10. Čarni, A., Marinček, L., Seliškar, A. & Zupančič M. 2002: Vegetacijska karta gozdnih združb Slovenije 1 : 400.00. [The vegetation map of forest communities of Slovenia 1 : 400.000.]. ZRC Publishing, Ljubljana.
  11. Chytrý, M., Tichý, L., Holt, J. & Botta-Dukát, Z. 2002: Determination of diagnostic species with statistical fidelity measures. Journal of Vegation Science 13: 79–90. DOI: https://doi.org/10.1111/j.1654-1103.2002.tb02025.x10.1111/j.1654-1103.2002.tb02025.x
  12. Cramer, V. A. & Hobbs, R. J. (eds.) 2007: Old fields: dynamics and restoration of abandoned farmland. Island Press, Washington, 335 pp.
  13. Cramer, V. A., Hobbs, R. J. & Standish, R. J. 2008: What’s new about old fields? Land abandonment and ecosystem assembly. Trends in Ecology & Evolution 23: 104–112. DOI: https://doi.org/10.1016/j.tree.2007.10.00510.1016/j.tree.2007.10.00518191278
  14. Csecserits, A., Szabó, R., Halassy, M. & Rédei, T. 2007: Testing the validity of successional predictions on an old-field chronosequence in Hungary. Community Ecology 8: 195–207. DOI: https://doi.org/10.1556/ComEc.8.2007.2.610.1556/ComEc.8.2007.2.6
  15. Csecserits, A., Czúcz, B., Halassy, M., Kröel-Dulay, Gy., Rédei, T., Szabó, R., Szitár, K. & Török, K. 2011: Regeneration of sandy old-fields in the forest steppe region of Hungary. Plant Biosystems 145: 715–729. DOI: https://doi.org/10.1080/11263504.2011.60134010.1080/11263504.2011.601340
  16. Donath, T. W., Hölzel, N. & Otte, A. 2003: The impact of site conditions and seed dispersal on restoration success in alluvial meadows. Applied Vegetation Science 6: 13–22. DOI: https://doi.org/10.1111/j.1654-109X.2003.tb00560.x10.1111/j.1654-109X.2003.tb00560.x
  17. Gams, I. 1993: Origin of the term “karst,” and the transformation of the Classical Karst (Kras). Environmental Geology 21: 110–114.
  18. Godwin, H. 1929: The sub-climax and deflected succession. Journal of Ecology 17: 144–147.10.2307/2255919
  19. Halassy, M., Singh, A. N., Szabó, R., Szili-Kovács, T., Szitár, K.& Török, K. 2016: The application of a filter-based assembly model to develop best practices for Pannonian sand grassland restoration. Journal of Applied Ecology 53: 765–773. DOI: https://doi.org/10.1111/1365-2664.1261810.1111/1365-2664.12618
  20. Házi, J., Bartha, S., Szentes, Sz. & Penksza, K. 2011: Seminatural grassland management by mowing of Calamagrostis epigeios in Hungary. Plant Biosystems 145: 699–707. DOI: https://doi.org/10.1080/11263504.2011.60133910.1080/11263504.2011.601339
  21. Janišová, M., Michalková, D., Bacaro, G. & Ghisla, A. 2014: Landscape effects on diversity of semi-natural grasslands. Agriculture, Ecosystems & Environment 182: 47–58. DOI: https://doi.org/10.1016/j.agee.2013.05.02210.1016/j.agee.2013.05.022
  22. Jongepierová, I., Jongepier, J. W., Klimes, L. 2004: Restoring grassland on arable land: an example of a fast spontaneous succession without weed-dominated stages. Preslia 76: 361–369.
  23. Kaligarič, M. 1997: Rastlinstvo Primorskega krasa in Slovenske Istre: travniki in pašniki. Zgodovinsko društvo za južno Primorsko: Znanstveno-raziskovalno središče Republike Slovenije, Koper. 111 pp.
  24. Kaligarič, M., Culiberg, M. & Kramberger, B. 2006: Recent vegetation history of the North Adriatic grasslands: expansion and decay of an anthropogenic habitat. Folia Geobotanica 41: 241–258. DOI: https://doi.org/10.1007/BF0290494010.1007/BF02904940
  25. Kaligarič, M. & Ivanjšič, D. 2014: Vanishing landscape of the “classic” Karst: changed landscape identity and projections for the future. Landscape and Urban Planning 132: 148–158. DOI: https://doi.org/10.1016/j.landurbplan.2014.09.00410.1016/j.landurbplan.2014.09.004
  26. Lepš, J. 1989: Horizontal structure. In: Osbornová J, Kovářová M, Lepš J, Prach K (eds.) Succession in abandoned fields. Studies in Central Bohemia, Czechoslovakia. Kluwer Academic Publishers, Dordrecht, pp. 38–42.
  27. Mangiafico, S. 2020: rcompanion: Functions to Support Extension Education Program Evaluation. R package version 2.3.25., https://CRAN.R-project.org/package=rcompanion
  28. Martinčič, A. (ed.) 2007: Mala flora Slovenije. Ključ za določanje praprotnic in semenk. Tehniška založba, Ljubljana, 967 pp.
  29. Matus, G., Tóthmérész, B. & Papp, M. 2003: Restoration prospects of abandoned species-rich sandy grassland in Hungary. Applied Vegetation Science 6: 169–178. DOI: https://doi.org/10.1111/j.1654-109X.2003.tb00577.x10.1111/j.1654-109X.2003.tb00577.x
  30. McCallum, K. P., Lowe, A. J., Breed, M. F. & Paton, D. C. 2018: Spatially designed revegetation—why the spatial arrangement of plants should be as important to revegetation as they are to natural systems. Restoration Ecology 26: 446–455. DOI: https://doi.org/10.1111/rec.1269010.1111/rec.12690
  31. McCune, B. & Mefford, M. J. 1999: PC-ORD. Multivariate Analysis of Ecological Data. Version 5.0.
  32. Molnár, Zs. & Botta-Dukát, Z. 1998: Improved space-for-time substitution for hypothesis generation: secondary grasslands with documented site history in SE-Hungary. Phytocoenologia 28: 1–29.10.1127/phyto/28/1998/1
  33. Mucina, L., Bültmann, H., Dierßen, K., Theurillat, J. P., Raus, T. & Čarni, A., (...) & Tichý, L. 2016: Vegetation of Europe: hierarchical floristic classification system of vascular plant, bryophyte, lichen, and algal communities. Applied Vegetation Science 19 (Suppl. 1): 3–264. DOI: https://doi.org/10.1111/avsc.1225710.1111/avsc.12257
  34. Ogle, D. H. 2018: FSA: Fisheries Stock Analysis. R package version 0.8.20.
  35. Oksanen, J., Blanchet, F. G., Friendly, M., Kindt, R., Legendre, P., McGlinn, D., Minchin, P. R., O’Hara, R. B., Simpson, G.L., Solymos, P., Henry, M., Stevens, H., Szoecs, E. & Wagner, H. 2017: Package ‘vegan’. Community ecology package. R package version, pp 117–118.
  36. Osbornová, J., Kovářová, M., Lepš, J. & Prach, K. (eds.) 1989: Succession in abandoned fields. Studies in Central Bohemia, Czechoslovakia. Kluwer Academic Publishers, Dordrecht, 168 pp.10.1007/978-94-009-2444-4
  37. Öster, M., Ask, K., Cousins, S. A. O. & Eriksson, O. 2009: Dispersal and establishment limitation reduces the potential for successful restoration of semi-natural grassland communities on former arable fields. Journal of Applied Ecology 46: 1266–1274. DOI: https://doi.org/10.1111/j.1365-2664.2009.01721.x10.1111/j.1365-2664.2009.01721.x
  38. Palang, H., Printsmann, A., Gyuro, E. K., Urbanc, M., Skowronek, E., & Woloszyn, W. 2006: The forgotten rural landscapes of Central and Eastern Europe. Landscape Ecology 21(3): 347–357. DOI: https://doi.org/10.1007/s10980-004-4313-x10.1007/s10980-004-4313-x
  39. Pickett, S. T. 1989: Space-for-time substitution as an alternative to long-term studies. In: Likens, F. G. (ed.) Long-term studies in ecology. Springer, New York, pp 110–135.
  40. Pickett, S. T. A., Cadenasso, M. L. & Bartha, S. 2001: Implication from the Buell-Small Successional Study for vegetation restoration. Applied Vegetation Science 4: 41–52. DOI: https://doi.org/10.1111/j.1654-109X.2001.tb00233.x10.1111/j.1654-109X.2001.tb00233.x
  41. Pickett, S. T. A., Collins, S. L. & Armesto, J. J. 1987: Models, mechanisms and pathways of succession. The Botanical Review 53: 335–371.
  42. Pignatti, S., Menegoni, P., Pietrosanti, S. 2005: Valori di bioindicazione delle piante vascolari. Valori di indicatione secondo Ellenberg per la piante delle flora d’Italia. Braun-Blanquetia 39: 3–97
  43. Pipenbaher, N., Kaligarič, M., Škornik, S. 2011: Floristic and functional comparision of karst pastures and karst meadows from the north Adriatic Karst. Acta Carsologica 40: 515–525. DOI: https://doi.org/10.3986/ac.v40i3.6110.3986/ac.v40i3.61
  44. Podani, J. 1987: Computerized sampling in vegetation studies. Coenoses 2: 9–18.
  45. Prach, K. & Pyšek, P. 1999: How do species dominating in succession differ from the others? Journal of Vegetation Science 10: 383–392. DOI: https://doi.org/10.2307/323706710.2307/3237067
  46. Prach, K. & Walker, L. R. 2019: Differences between primary and secondary plant succession among biomes of the world. Journal of Ecology 107: 510–516. DOI: https://doi.org/10.1111/1365-2745.1307810.1111/1365-2745.13078
  47. Prach, K., Pyšek, P. & Šmilauer, P. 1999: Prediction of vegetation succession in human-disturbed habitats using an expert system. Restoration Ecology 7: 15–23. DOI: https://doi.org/10.1046/j.1526-100X.1999.07102.x10.1046/j.1526-100X.1999.07102.x
  48. Prach, K., Bartha, S., Joyce, C. H. B., Pyšek, P., van Diggelen, R. & Wiegleb, G. 2001: The role of spontaneous vegetation succession in ecosystem restoration: A perspective. Applied Vegetation Science 4: 111–114. DOI: https://doi.org/10.1111/j.1654-109X.2001.tb00241.x10.1111/j.1654-109X.2001.tb00241.x
  49. Prach, K., Lepš, J. & Rejmánek, M. 2007: Old field succession in Central Europe: local and regional patterns. In: Cramer, V. A. & Hobbs, R. J. (eds.) Old fields: Dynamics and restoration of abandoned farmland. Island Press, pp 180–202.
  50. Prach, K., Řehounková, K., Lencová, K., Jírová, A., Konvalinková, P., Mudrák, O., Študent, V., Vaněček, Z., Tich, L., Petřík, P., Šmilauer, P. & Pyšek, P. 2014: Vegetation succession in restoration of disturbed sites in Central Europe: the direction of succession and species richness across 19 seres. Applied Vegetation Science 17: 193–200. DOI: https://doi.org/10.1111/avsc.1206410.1111/avsc.12064
  51. Pywell, R. F., Bullock, J. M., Hopkins, A., Walker, K. J., Sparks, T. H., Burke, M. J. & Peel, S. 2002: Restoration of species-rich grassland on arable land: assessing the limiting processes using a multi-site experiment. Journal of Applied Ecology 39: 294–309. DOI: https://doi.org/10.1046/j.1365-2664.2002.00718.x10.1046/j.1365-2664.2002.00718.x
  52. R Core Team 2018: R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, URL https://www.R-project.org/
  53. Rejmánek, M. & van Katwyk, P. 2005: Old-field succession: a bibliographic review (1901–1991), http://botanika.bf.jcu.cz/suspa/pdf/BiblioOF.pdf
  54. Robertson, G. P., Huston, M. A., Evans, F. C. & Tiedje, J. M. 1988: Spatial variability in successional plant community: patterns of nitrogen availability. Ecology 69: 1517–1524. DOI: https://doi.org/10.2307/194164910.2307/1941649
  55. Ruprecht, E. 2006: Successfully recovered grassland: a promising example from Romanian old-fields. Restoration Ecology 14: 473–480.10.1111/j.1526-100X.2006.00155.x
  56. Ruprecht, E., Bartha, S., Botta-Dukát, Z. & Szabó, A. 2007: Assembly rules during old-field succession in two contrasting environments. Community Ecology 8: 31–40. DOI: https://doi.org/10.1556/ComEc.8.2007.1.510.1556/ComEc.8.2007.1.5
  57. Schmid, B. C., Poschlod, P. & Prentice, H. C. 2017: The contribution of successional grasslands to the conservation of semi-natural grassland species – A landscape perspective. Biological Conservation 206: 112–119. DOI: https://doi.org/10.1016/j.biocon.2016.12.00210.1016/j.biocon.2016.12.002
  58. Škornik, S., Vidrih, M. & Kaligarič, M. 2010: The effect of grazing pressure on species richness, composition and productivity in North Adriatic Karst pastures. Plant Biosystems 144: 355–364. DOI: https://doi.org/10.1080/1126350100375025010.1080/11263501003750250
  59. Sojneková, M. & Chytrý, M. 2015: From arable land to species-rich semi-natural grasslands: Succession in abandoned fields in a dry region of central Europe. Ecological Engineering 77: 373–381. DOI: https://doi.org/10.1016/j.ecoleng.2015.01.04210.1016/j.ecoleng.2015.01.042
  60. Sokal, R. R. & Rohlf, F. J. 1995: Biometry: the principles and practice of statistics in biological research. 3rd ed. Freeman, New York, 887 pp.
  61. Symonides, E. 1985: Changes in phytocoenose structure in early phases of old-field succession in Poland. Tuexenia 5: 259–271.
  62. Szentes, Sz., Sutyinszki, Zs., Szabó, G., Zimmermann, Z., Házi, J., Wichmann, B., Hufnágel, L., Penksza, K. & Bartha, S. 2012: Grazed Pannonian grassland beta-diversity changes due to C4 yellow bluestem. Central European Journal of Biology 7: 1055–1065. DOI: https://doi.org/10.2478/s11535-012-0101-910.2478/s11535-012-0101-9
  63. Tichý, L. & Chytrý, M. 2006: Statistical determination of diagnostic species for site groups of unequal size. Journal of Vegetation Science 17: 809–818. DOI: https://doi.org/10.1111/j.1654-1103.2006.tb02504.x10.1111/j.1654-1103.2006.tb02504.x
  64. Tichý, L., Chytrý, M., Hájek, M., Talbot, S. S. & Botta-Dukát, Z. 2010: OptimClass: Using species-to-cluster fidelity to determine the optimal partition in classification of ecological communities. Journal of Vegetation Science 21: 287–299. DOI: https://doi.org/10.1111/j.1654-1103.2009.01143.x10.1111/j.1654-1103.2009.01143.x
  65. Tölgyesi, Cs., Török, P., Kun, R., Csathó, A. I., Bátori, Z., Erdős, L. & Vadász, Cs. 2019: Recovery of species richness lags behind functional recovery in restored grasslands. Land Degradation and Development 30: 1083–1094. DOI: https://doi.org/10.1002/ldr.329510.1002/ldr.3295
  66. Török, P & Helm, A. 2017: Ecological theory provides strong support for habitat restoration. Biological Conservation 206: 85–91. DOI: https://doi.org/10.1016/j.biocon.2016.12.02410.1016/j.biocon.2016.12.024
  67. Török, P., Vida, E., Deák, B., Lengyel, Sz. & Tóthmérész, B. 2011a: Grassland restoration on former croplands in Europe: an assessment of applicability of techniques and costs. Biodiversity and Conservation 20: 2311–2332. DOI: https://doi.org/10.1007/s10531-011-9992-410.1007/s10531-011-9992-4
  68. Török, P., Kelemen, A., Valkó, O., Deák, B., Lukács, B. & Tóthmérész, B. 2011b: Lucerne-dominated fields recover native grass diversity without intensive management actions. Journal of Applied Ecology 48: 257–264. DOI: https://doi.org/10.1111/j.1365-2664.2010.01903.x10.1111/j.1365-2664.2010.01903.x
  69. Török, P., Kelemen, A.,Valkó, O., Miglécz, T., Tóth, K., Tóth, E., Sonkoly, J., Kiss, R., Csecserits, A., Rédei, T., Deák, B., Szűcs, P., Varga, N. & Tóthmérész, B. 2018: Succession in soil seed banks and implications for restoration of calcareous sand grasslands. Restoration Ecology 26(S2): S134–S140. DOI: https://doi.org/10.1111/rec.1261110.1111/rec.12611
  70. Vitasović Kosić, I., Tardella, F. M. & Catorci, A. 2012: Effect of management modification on the coenological composition of the North Adriatic pastoral landscape (Ćićarija, Croatia). Hacquetia 11: 17–46. DOI: https://doi.org/10.2478/v10028-012-0002-510.2478/v10028-012-0002-5
  71. Vrščaj, B., Repe, B. & Simončič, P. 2017: The soils of Slovenia. Springer Netherlands, Dordrecht. 216 pp.10.1007/978-94-017-8585-3
  72. Walker, K. J., Stevens, P. A., Stevens, D. P., Mountford, J. O., Manchester, S. J., & Pywell, R. F. 2004: The restoration and re-creation of species-rich lowland grassland on land formerly managed for intensive agriculture in the UK. Biological Conservation 119: 1–18. DOI: https://doi.org/10.1016/j.biocon.2003.10.02010.1016/j.biocon.2003.10.020
  73. Wickham, H. 2016: ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag, New York.10.1007/978-3-319-24277-4
  74. Zelený, D. 2018: Which results of the standard test for community - weighted mean approach are too optimistic? Journal of Vegetation Science 29: 953–966. DOI: https://doi.org/10.1111/jvs.1268810.1111/jvs.12688
DOI: https://doi.org/10.2478/hacq-2020-0017 | Journal eISSN: 1854-9829 | Journal ISSN: 1581-4661
Language: English
Page range: 177 - 188
Submitted on: Mar 14, 2020
|
Accepted on: Jul 21, 2020
|
Published on: Mar 1, 2021
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2021 Andraž Čarni, Zita Zimmermann, Nina Juvan, Andrej Paušič, Gábor Szabó, Sándor Bartha, published by Slovenian Academy of Sciences and Arts
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.