Have a personal or library account? Click to login
Another Ambiguous Expression by Leonardo da Vinci Cover

Another Ambiguous Expression by Leonardo da Vinci

Open Access
|Nov 2022

References

  1. Akaike, H. (1998). Information theory and an extension of the maximum likelihood principle. In E. Parzen, K. Tanabe & G. Kitagawa (Eds.), Selected papers of hirotugu akaike (pp. 199-213). Springer, New York, NY.10.1007/978-1-4612-1694-0_15
  2. Argenton, L. M., Prest, T., Tiziano, A., Tamara, P., Tonzar, C., & Verstegen, I. (2019). “Il pittore deve studiare con regola”. Arte e psicologia della visione in Leonardo da Vinci con lo sguardo di Alberto Argenton e della scuola di psicologia della gestalt dell’universita di trieste.
  3. Asch, S. E. (1956). Studies of independence and conformity: I. A minority of one against a unanimous majority. Psychological Monographs: General and Applied, 70(9), 1–70. doi:10.1037/h0093718
  4. Ball, P. (2010). Behind the Mona Lisa’s smile. Nature, 466(7307), 694–694.10.1038/466694a
  5. Beedie, C., Terry, P., & Lane, A. (2005). Distinctions between emotion and mood. Cognition & Emotion, 19(6), 847–878.10.1080/02699930541000057
  6. Box, G. E. P., & Tiao, G. C. (1992). Bayesian Inference in Statistical Analysis (Wiley classics library ed). New Jersey, US: Wiley.10.1002/9781118033197
  7. Bürkner, P. C. (2017a). Advanced Bayesian multilevel modeling with the r package brms. arXiv Preprint arXiv:1705.11123.10.32614/RJ-2018-017
  8. Bürkner, P. C., & (2017b). Brms: An r package for Bayesian multilevel models using Stan. Journal of Statistical Software, 80(1), 1–28.10.18637/jss.v080.i01
  9. Bürkner P-C, Vuorre M. (2019). Ordinal Regression Models in Psychology: A Tutorial. Advances in Methods and Practices in Psychological Science, 77–101. doi:10.1177/2515245918823199
  10. Carpenter, B., Gelman, A., Hoffman, M. D., Lee, D., Goodrich, B., Betancourt, M., Riddell, A. (2017). Stan: A probabilistic programming language. Journal of Statistical Software, 76(1), 1–32.10.18637/jss.v076.i01
  11. Carroll, J., & Russell, J. (1996). Do facial expressions signal specific emotions? Judging emotion from the face in context. Journal of Personality and Social Psychology, 70(2), 205.10.1037/0022-3514.70.2.205
  12. Chen, M.-H., Shao, Q.-M., & Ibrahim, J. G. (2000). Computing bayesian credible and HPD intervals. In M.-H. Chen, Q.-M. Shao, & J. G. Ibrahim (Eds.), Monte Carlo Methods in Bayesian Computation (pp. 213–235). Springer. doi:10.1007/978-1-4612-1276-8_7
  13. da Vinci, L. (1632/1817). Trattato della pittura. Stamp. de Romanis.
  14. De Valois, R., & De Valois, K. (1980). Spatial vision. Annual Review of Psychology, 31(1), 309–341.10.1146/annurev.ps.31.020180.0015217362215
  15. Dienes, Z. (2014). Using bayes to get the most out of non-significant results. Frontiers in Psychology, 5, doi:10.3389/fpsyg.2014.00781411419625120503
  16. Elias, M., & Cotte, P. (2008). Multispectral camera and radiative transfer equation used to depict Leonardo’s sfumato in Mona Lisa. Applied Optics, 47(12), 2146–2154.10.1364/AO.47.00214618425189
  17. Gelman, A., & Rubin, D. B. (1992). Inference from iterative simulation using multiple sequences. Statistical Science, 7(4), 457–472.10.1214/ss/1177011136
  18. Gelman, A., Carlin, J. B., Stern, H. S., & Rubin, D. B. (1995). Bayesian data analysis. Boca Raton, Florida, US: Chapman; Hall/CRC.10.1201/9780429258411
  19. Gilchrist, A. (2020). The integrity of vision. Perception, 49(10), 999–1004. doi:10.1177/030100662095837232956025
  20. Goffaux, V., & Rossion, B. (2006). Faces are “spatial”—holistic face perception is supported by low spatial frequencies. Journal of Experimental Psychology. Human Perception and Performance, 32, 1023–1039. doi:10.1037/0096-1523.32.4.102316846295
  21. Gombrich, E. H. (1995). The story of art (Vol. 12). London, UK: Phaidon.
  22. Hespanhol, L., Vallio, C. S., Costa, L. M., & Saragiotto, B. T. (2019). Understanding and interpreting confidence and credible intervals around effect estimates. Brazilian Journal of Physical Therapy, 23(4), 290–301. doi:10.1016/j.bjpt.2018.12.006663011330638956
  23. Jeffreys, H. (1961). The theory of probability. Oxford, UK: Oxford University Press.
  24. Judd, C. M., Westfall, J., & Kenny, D. A. (2012). Treating stimuli as a random factor in social psychology: A new and comprehensive solution to a pervasive but largely ignored problem. Journal of Personality and Social Psychology, 103(1), 54–69. doi:10.1037/a002834722612667
  25. Kanizsa, G. (1954): Il gradiente marginale come fattore dell‘aspetto fenomenico dei colori. Archivio di Psicologia, Neurologia e Psichiatrica, 15, 251–264.
  26. Kanizsa, G. (1979): Organization in vision: Essays on gestalt perception. New York, NY: Praeger.
  27. Kardos, L. (1934). Ding und schatten. Eine experimentelle untersuchung über die grundlagen des farbensehens. Zeitschrift für Psychologie Und Physiologie Der Sinnesorgane. Abt. 1. Zeitschrift Für Psychologie.
  28. Katz, D. (1911). Die Erscheinungsweisen der Farben und ihre Beeinflussung durch die individuelle Erfahrung. Zeitschrift für Psychologie, 7(1). JA Barth.
  29. Kemp, M. J. (1977). Leonardo and the visual pyramid. Journal of the Warburg and Courtauld Institutes, (40,) 128–149.10.2307/750993
  30. Kemp, M. J., Cotte, P., Schwan, E., Strinati, C., & Biro, P. P. (2010). La Bella Principessa: The Story of the New Masterpiece by Leonardo da Vinci. London, UK: Hodder & Stoughton.
  31. Kontsevich, L. L., & Tyler, C. W. (2004). What makes Mona Lisa smile? Vision Research, 44(13), 1493–1498.10.1016/j.visres.2003.11.02715126060
  32. Kruschke, J. K. (2013). Bayesian estimation supersedes the t test. Journal of Experimental Psychology: General, 142(2), 573–603. doi:10.1037/a002914622774788
  33. Kruschke, J. (2015). Doing bayesian data analysis: A tutorial with R, JAGS, and Stan. Elsevier Science. Amsterdam, Netherlands. ISBN: 978-0-12-405916-0
  34. Kruschke, J. K., & Liddell, T. M. (2018). Bayesian data analysis for newcomers. Psychonomic Bulletin & Review, 25(1), 155–177. https://doi.org/10.3758/s13423-017-1272-128405907
  35. Lenth, R.V. (2021). Emmeans: Estimated Marginal Means, aka least-squares means [Manual] url: https://CRAN.R-project.org/package=emmeans
  36. Liaci, E., Fischer, A., Heinrichs, M., van Elst, L. T., & Kornmeier, J. (2017). Mona Lisa is always happy–and only sometimes sad. Scientific Reports, 7(1), 1–10.10.1038/srep43511534509028281547
  37. Liddell, T. M., & Kruschke, J. K. (2018). Analyzing ordinal data with metric models: What could possibly go wrong? Journal of Experimental Social Psychology, 79, 328–348.10.1016/j.jesp.2018.08.009
  38. Livingstone, M. (2000). Is it warm? Is it real? Or just low spatial frequency? Science, 290(5495), 1299–1299.10.1126/science.290.5495.1299b
  39. Livingstone, M., & Hubel, D. (2002). Vision and Art: The Biology of Seeing (Vol. 2). New York, NY: Harry N. Abrams.
  40. Mamassian, P. (2008). Ambiguities and conventions in the perception of visual art. Vision Research, 48(20), 2143–2153.10.1016/j.visres.2008.06.01018619482
  41. Maxwell, S. E., Kelley, K., & Rausch, J. R. (2008). Sample size planning for statistical power and accuracy in parameter estimation. Annual Review of Psychology, 59, 537–563.10.1146/annurev.psych.59.103006.09373517937603
  42. McShane, B. B., Gal, D., Gelman, A., Robert, C., & Tackett, J. L. (2019). Abandon statistical significance. The American Statistician, 73(Supp1.), 235–245.10.1080/00031305.2018.1527253
  43. Muth, C., & Carbon, C.-C. (2016). SeIns: Semantic instability in art. Art & Perception, 4(1–2), 145–184.10.1163/22134913-00002049
  44. Nagel, A. (1993). Leonardo and sfumato. RES: Anthropology and Aesthetics, 24(1), 7–20.10.1086/RESv24n1ms20166875
  45. Palmer, A. L. (2018). Leonardo da Vinci: A reference guide to his life and works. Lanham, Maryland, US: Rowman & Littlefield.
  46. Palmer, S. E., Brooks, J. L., & Nelson, R. (2003). When does grouping happen? Acta Psychologica, 114(3), 311–330.10.1016/j.actpsy.2003.06.00314670702
  47. Pater, W. (1917). La renaissance. Paris: France Library Payot.
  48. Sergent, J. (1994). Brain-imaging studies of cognitive functions. Trends in Neurosciences, 17(6), 221–227.10.1016/0166-2236(94)90002-77521081
  49. Shulman, G. L., & Wilson, J. (1987). Spatial frequency and selective attention to local and global information. Perception, 16(1), 89–101.10.1068/p1600893671045
  50. Soranzo, A., & Agostini, T. (2006a). Does perceptual belongingness affect lightness constancy? Perception, 35(2), 185–192. doi:10.1068/p534216583764
  51. Soranzo, A., & Agostini, T. (2006b). Photometric, geometric, and perceptual factors in illumination-independent lightness constancy. Perception & Psychophysics, 68(1), 102–113.10.3758/BF0319366016617834
  52. Soranzo, A., & Newberry, M. (2015). The uncatchable smile in Leonardo da Vinci’s la Bella Principessa portrait. Vision Research, 113, 78–86.10.1016/j.visres.2015.05.01426049039
  53. Soranzo, A., & Newberry, M. (2016). Investigating the ’Uncatchable Smile’ in Leonardo da Vinci’s la Bella Principessa: A comparison with the Mona Lisa and Pollaiuolo’s portrait of a girl. JoVE (Journal of Visualized Experiments), 116, e54248.10.3791/54248509216427768043
  54. Team, R. C. (2019). 2020. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.r-project.org/.
  55. Van der Linden, S., & Chryst, B. (2017). No need for Bayes factors: A fully Bayesian evidence synthesis. Frontiers in Applied Mathematics and Statistics, 3, 12.10.3389/fams.2017.00012
  56. Vasari, G. (1882). Le vite de più eccellenti pittori, scultori ed architettori (Vol. 8). Florence, Italy: GC Sansoni.
  57. Vehtari, A., Gelman, A., & Gabry, J. (2017). Practical Bayesian model evaluation using leave-one-out cross-validation and WAIC. Statistics and Computing, 27(5), 1413–1432.10.1007/s11222-016-9696-4
  58. Verstegen, I. (2005). Mona Lisa’s smile: The place of experimental phenomenology within Gestalt Theory. Gestalt Theory, 27(2), 91–106.
  59. Wagenmakers, E.-J. (2007). A practical solution to the pervasive problems of p values. Psychonomic Bulletin & Review, 14(5), 779–804.10.3758/BF03194105
  60. Wagenmakers, E.-J., Gronau, Q. F., & Vandekerckhove, J. (2019). Five Bayesian Intuitions for the Stopping Rule Principle [Preprint]. PsyArXiv. doi:10.31234/osf.io/5ntkd
  61. Watanabe, S., & Opper, M. (2010). Asymptotic equivalence of bayes cross validation and widely applicable information criterion in singular learning theory. Journal of Machine Learning Research, 11(12), 3571–3594.
  62. Wertheimer, M. (1923). Untersuchungen zur Lehre von der Gestalt II [Laws of organization in perceptual forms]. Psychologische Forschung, 4, 301–350. Translation published in Ellis, W. (ed.) (1938): A Source Book of Gestalt Psychology, 71-88. London: Routledge & Kegan Paul.10.1007/BF00410640
  63. Yeshurun, Y., Carrasco, M., & Maloney, L. T. (2008). Bias and sensitivity in two-interval forced choice procedures: Tests of the difference model. Vision Research, 48(17), 1837–1851.10.1016/j.visres.2008.05.008583913018585750
DOI: https://doi.org/10.2478/gth-2022-0001 | Journal eISSN: 2519-5808 | Journal ISSN: 0170-057X
Language: English, German
Page range: 41 - 60
Published on: Nov 10, 2022
Published by: Society for Gestalt Theory and its Applications (GTA)
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year

© 2022 Alessandro Soranzo, published by Society for Gestalt Theory and its Applications (GTA)
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.