References
- Tracey DF, Noya EG, Doye JPK (2019) Programming patchy particles to form complex periodic structures. J. Chem. Phys. 151, 224506.
- Romano F, Sanz E, Sciortino F (2011) Crystallization of tetrahedral patchy particles in silico. J. Chem. Phys. 134, 174502.
- Noya EG, Zubieta I, Pine DJ, Sciortino F (2019) Assembly of clathrates from tetrahedral patchy colloids with narrow patches. J. Chem. Phys. 151: 094502.
- Wang Y, Wang Y, Breed DR, Manoharan VN, Feng L, Hollingsworth AD, Weck M, Pine DJ (2012) Colloids with valence and specific directional bonding. Nature 491: 51.
- Soto R, Golestanian R (2015) Self-assembly of active colloidal molecules with dynamic function. Phys. Rev. E 91: 052304.
- Ni S, Leemann J, Buttinoni I, Isa L, Wolf H (2016) Programmable colloidal molecules from sequential capillarity-assisted particle assembly. Science Advances 2: e1501779.
- Elacqua E, Zheng X, Shillingford C, Liu M, Weck M (2017) Molecular recognition in the colloidal world. Acc. Chem. Res. 50: 2756.
- Gong Z, Hueckel Z, Yi GR, Sacanna S (2017) Patchy particles made by colloidal fusion. Nature 364: 550, 234.
- Zhu J, Li M, Rogers R, Meyer W, Ottewill RH, STS-73 Space Shuttle Crew, Russel WB, Chaikin PM (1997) Crystallization of hard-sphere colloids in microgravity. Nature 387: 883.
- Cheng Z, Zhu J, Russel WB, Meyer WV, Chaikin PM (2001) Colloidal hard-sphere crystallization kinetics in microgravity and normal gravity. Applied Optics 40: 4146.
- Li W, Lan D, Sun Z, Geng B, Wang X, Tian W, Zhai G, Wang Y (2016) Colloidal material box: In-situ observations of colloidal self-assembly and liquid crystal phase transitions in microgravity. Microgravity Sci. Technol. 28: 179.
- Veen SJ, Potenza M, Alaimo M, Antoniuk O, Mazzoni S, Schall P, Wegdam G (2012) Colloidal aggregation in microgravity by critical Casimir forces. Phys. Rev. Lett. 109: 248302.
- Fisher ME, de Gennes P-G (1978) Physique des colloides. C. R. Acad. Sci. Ser. B 287: 207.
- Hertlein C, Helden L, Gambassi A, Dietrich S, Bechinger C (2008) Direct measurement of critical Casimir forces. Nature 451: 172–175.
- Gambassi A, Maciołek A, Hertlein C, Nellen U, Helden L, Bechinger C, Dietrich S (2009) Critical Casimir effect in classical binary liquid mixtures. Phys. Rev. E 80: 061143.
- Mohry TF, Kondrat S, Maciołek A, Dietrich S (2014) Critical Casimir interactions around the consolute point of a binary solvent. Soft Matter 10: 5510.
- Maciolek A, Dietrich S (2018), Collective behavior of colloids due to critical Casimir interactions. Rev. Mod. Phys. 90: 045001.
- Nguyen VD, Dang T, Schall PT (2016) Critical Casimir forces for colloidal assembly. Topical Review, J. Phys.: Condens. Matter 28: 043001.
- Guo H, Narayanan T, Sztucki M, Schall P, Wegdam G (2008) Reversible phase transition of colloids in a binary liquid solvent. Phys. Rev. Lett. 100: 188303.
- Nguyen D, Faber S, Wegdam G, Hu Z, Schall P (2013) Controlling colloidal phase transitions with critical Casimir forces. Nature communications 4: 1584.
- Shelke P, Nguyen D, Limaye AV, Schall P (2013) Controlling colloidal morphologies by critical Casimir forces. Adv. Mater. 25: 1499.
- Dang T, Vila-Verde A, Nguyen D, Bolhuis P, Schall P (2013) Temperature-sensitive colloidal phase behavior induced by critical Casimir forces. J. Chem. Phys. 139: 094903.
- Stuij S, Labbe-Laurent M, Kodger TE, Maciolek A, Schall P (2017) Critical Casimir interactions between colloids around the critical point of binary solvents. Soft Matter 13: 5233.
- Potenza M, Manca A, Veen SJ, Weber B, Mazzoni S, Schall P, Wegdam GH (2014) Dynamics of colloidal aggregation in microgravity by critical Casimir forces. Europhys. Lett. 106: 68005.
- Potenza MA, Veen SJ, Schall P, Wegdam GH (2018) Nucleation of weakly attractive aggregates in microgravity. Europhys. Lett. 124: 28002.
- Mazzoni S, Potenza M, Alaimo M, Veen SJ, Dielissen M, Leussink E, Dewandel J-L, Minster O, Kufner E, Wegdam G, Schall P (2013) SODI-COLLOID: A combination of static and dynamic light scattering on board the International Space Station. Review of Scientific Instruments 84: 043704.
- Rouwhorst J, Ness C, Zaccone A, Schall P (2020) Nonequilibrium continuous phase transition in colloidal gelation with short-range attraction. Nature Comm. 11: 3558.
- Rouwhorst J, Ness C, Zaccone A, Schall P (2020) Nonequilibrium master kinetic equation modelling of colloidal gelation. Phys. Rev. E 102: 022602.
- Stuij S, Rouwhorst J, Jonas HJ, Ruffino N, Gong Z, Sacanna S, Bolhuis PG, Schall P (2021) Revealing polymerization kinetics with colloidal dipatch particles. Phys. Rev. Lett. 127: 108001.
- Flory PJ (1953) Principles of Polymer Chemistry, Ithaca: Cornell University Press.
- Jonas HJ, Stuij S, Schall P, Bolhuis PG (2021) A temperature dependent critical Casimir patchy particle model benchmarked onto experiment. J. Chem. Phys. 155: 034902.
- Bianchi E, Largo J, Tartaglia P, Zaccarelli E, Sciortino F (2006) Phase diagram of patchy colloids: Towards empty liquids. Phys. Rev. Lett. 97: 168301.
- Sciortino F (2016) Basic concepts in self-assembly. Proceedings of the International School of Physics „Enrico Fermi“ 193: 1–17.
- Chapman WG, Jackson G, Gubbins KE (1988) Phase equilibria of associating fluids: Chain molecules with multiple bonding sites. Molecular Physics 65: 1057.
- Sciortino F, Bianchi E, Douglas JF, Tartaglia P (2007) Self-assembly of patchy particles into polymer chains: A parameter-free comparison between Wertheim theory and Monte Carlo simulation. J. Chem. Phys. 126: 194903.
- de Las Heras D, JM Tavares, Telo da Gama M (2011) Soft matter. Soft Matter 12: 5615.
- Russo J, Tartaglia P, Sciortino F (2010) Association of limited valence patchy particles in two dimensions. Soft Matter 6: 4229.
- Swinkels P, Sinaasappel R, Gong Z, Sacanna S, Meyer WV, Sciortino F, Schall P (2024) Equilibrium gels from patchy particles. Phys. Rev. Lett. 132: 078203.
- Swinkels PJM, Stuij SG, Gong Z, Jonas H, van der Linden B, Bolhuis PG, Sacanna S, Woutersen S, Schall P (2021) Revealing conformational dynamics of colloidal alkanes. Nature Comm. 12: 2810.
- Kilpatrick JE, Pitzer KS, Spitzer R (1947) The thermodynamics and molecular structure of cyclopentane. J. Am. Chem. Soc. 69: 2483–2488.
- Poupko R, Luz Z, Zimmermann H (1982) Pseudorotation in cyclopentane. An experimental determination of the puckering amplitude by NMR in oriented solvents. J. Am. Chem. Soc. 104: 5307.
- Ocola EJ, Bauman LE, Laane J (2011) Vibrational spectra and structure of cyclopentane and its isotopomers. J. Phys. Chem. A 115: 6531.
- Kowalewski P, Frey H-M, Infanger D, Leutwyler S (2015) Probing the structure, pseudorotation, and radial vibrations of cyclopentane by femtosecond rotational Raman coherence spectroscopy. J. Phys. Chem. A 119: 11215.