Have a personal or library account? Click to login
Colloidal molecules in microgravity assembled by critical Casimir forces Cover

Colloidal molecules in microgravity assembled by critical Casimir forces

Open Access
|Mar 2025

References

  1. Tracey DF, Noya EG, Doye JPK (2019) Programming patchy particles to form complex periodic structures. J. Chem. Phys. 151, 224506.
  2. Romano F, Sanz E, Sciortino F (2011) Crystallization of tetrahedral patchy particles in silico. J. Chem. Phys. 134, 174502.
  3. Noya EG, Zubieta I, Pine DJ, Sciortino F (2019) Assembly of clathrates from tetrahedral patchy colloids with narrow patches. J. Chem. Phys. 151: 094502.
  4. Wang Y, Wang Y, Breed DR, Manoharan VN, Feng L, Hollingsworth AD, Weck M, Pine DJ (2012) Colloids with valence and specific directional bonding. Nature 491: 51.
  5. Soto R, Golestanian R (2015) Self-assembly of active colloidal molecules with dynamic function. Phys. Rev. E 91: 052304.
  6. Ni S, Leemann J, Buttinoni I, Isa L, Wolf H (2016) Programmable colloidal molecules from sequential capillarity-assisted particle assembly. Science Advances 2: e1501779.
  7. Elacqua E, Zheng X, Shillingford C, Liu M, Weck M (2017) Molecular recognition in the colloidal world. Acc. Chem. Res. 50: 2756.
  8. Gong Z, Hueckel Z, Yi GR, Sacanna S (2017) Patchy particles made by colloidal fusion. Nature 364: 550, 234.
  9. Zhu J, Li M, Rogers R, Meyer W, Ottewill RH, STS-73 Space Shuttle Crew, Russel WB, Chaikin PM (1997) Crystallization of hard-sphere colloids in microgravity. Nature 387: 883.
  10. Cheng Z, Zhu J, Russel WB, Meyer WV, Chaikin PM (2001) Colloidal hard-sphere crystallization kinetics in microgravity and normal gravity. Applied Optics 40: 4146.
  11. Li W, Lan D, Sun Z, Geng B, Wang X, Tian W, Zhai G, Wang Y (2016) Colloidal material box: In-situ observations of colloidal self-assembly and liquid crystal phase transitions in microgravity. Microgravity Sci. Technol. 28: 179.
  12. Veen SJ, Potenza M, Alaimo M, Antoniuk O, Mazzoni S, Schall P, Wegdam G (2012) Colloidal aggregation in microgravity by critical Casimir forces. Phys. Rev. Lett. 109: 248302.
  13. Fisher ME, de Gennes P-G (1978) Physique des colloides. C. R. Acad. Sci. Ser. B 287: 207.
  14. Hertlein C, Helden L, Gambassi A, Dietrich S, Bechinger C (2008) Direct measurement of critical Casimir forces. Nature 451: 172–175.
  15. Gambassi A, Maciołek A, Hertlein C, Nellen U, Helden L, Bechinger C, Dietrich S (2009) Critical Casimir effect in classical binary liquid mixtures. Phys. Rev. E 80: 061143.
  16. Mohry TF, Kondrat S, Maciołek A, Dietrich S (2014) Critical Casimir interactions around the consolute point of a binary solvent. Soft Matter 10: 5510.
  17. Maciolek A, Dietrich S (2018), Collective behavior of colloids due to critical Casimir interactions. Rev. Mod. Phys. 90: 045001.
  18. Nguyen VD, Dang T, Schall PT (2016) Critical Casimir forces for colloidal assembly. Topical Review, J. Phys.: Condens. Matter 28: 043001.
  19. Guo H, Narayanan T, Sztucki M, Schall P, Wegdam G (2008) Reversible phase transition of colloids in a binary liquid solvent. Phys. Rev. Lett. 100: 188303.
  20. Nguyen D, Faber S, Wegdam G, Hu Z, Schall P (2013) Controlling colloidal phase transitions with critical Casimir forces. Nature communications 4: 1584.
  21. Shelke P, Nguyen D, Limaye AV, Schall P (2013) Controlling colloidal morphologies by critical Casimir forces. Adv. Mater. 25: 1499.
  22. Dang T, Vila-Verde A, Nguyen D, Bolhuis P, Schall P (2013) Temperature-sensitive colloidal phase behavior induced by critical Casimir forces. J. Chem. Phys. 139: 094903.
  23. Stuij S, Labbe-Laurent M, Kodger TE, Maciolek A, Schall P (2017) Critical Casimir interactions between colloids around the critical point of binary solvents. Soft Matter 13: 5233.
  24. Potenza M, Manca A, Veen SJ, Weber B, Mazzoni S, Schall P, Wegdam GH (2014) Dynamics of colloidal aggregation in microgravity by critical Casimir forces. Europhys. Lett. 106: 68005.
  25. Potenza MA, Veen SJ, Schall P, Wegdam GH (2018) Nucleation of weakly attractive aggregates in microgravity. Europhys. Lett. 124: 28002.
  26. Mazzoni S, Potenza M, Alaimo M, Veen SJ, Dielissen M, Leussink E, Dewandel J-L, Minster O, Kufner E, Wegdam G, Schall P (2013) SODI-COLLOID: A combination of static and dynamic light scattering on board the International Space Station. Review of Scientific Instruments 84: 043704.
  27. Rouwhorst J, Ness C, Zaccone A, Schall P (2020) Nonequilibrium continuous phase transition in colloidal gelation with short-range attraction. Nature Comm. 11: 3558.
  28. Rouwhorst J, Ness C, Zaccone A, Schall P (2020) Nonequilibrium master kinetic equation modelling of colloidal gelation. Phys. Rev. E 102: 022602.
  29. Stuij S, Rouwhorst J, Jonas HJ, Ruffino N, Gong Z, Sacanna S, Bolhuis PG, Schall P (2021) Revealing polymerization kinetics with colloidal dipatch particles. Phys. Rev. Lett. 127: 108001.
  30. Flory PJ (1953) Principles of Polymer Chemistry, Ithaca: Cornell University Press.
  31. Jonas HJ, Stuij S, Schall P, Bolhuis PG (2021) A temperature dependent critical Casimir patchy particle model benchmarked onto experiment. J. Chem. Phys. 155: 034902.
  32. Bianchi E, Largo J, Tartaglia P, Zaccarelli E, Sciortino F (2006) Phase diagram of patchy colloids: Towards empty liquids. Phys. Rev. Lett. 97: 168301.
  33. Sciortino F (2016) Basic concepts in self-assembly. Proceedings of the International School of Physics „Enrico Fermi“ 193: 1–17.
  34. Chapman WG, Jackson G, Gubbins KE (1988) Phase equilibria of associating fluids: Chain molecules with multiple bonding sites. Molecular Physics 65: 1057.
  35. Sciortino F, Bianchi E, Douglas JF, Tartaglia P (2007) Self-assembly of patchy particles into polymer chains: A parameter-free comparison between Wertheim theory and Monte Carlo simulation. J. Chem. Phys. 126: 194903.
  36. de Las Heras D, JM Tavares, Telo da Gama M (2011) Soft matter. Soft Matter 12: 5615.
  37. Russo J, Tartaglia P, Sciortino F (2010) Association of limited valence patchy particles in two dimensions. Soft Matter 6: 4229.
  38. Swinkels P, Sinaasappel R, Gong Z, Sacanna S, Meyer WV, Sciortino F, Schall P (2024) Equilibrium gels from patchy particles. Phys. Rev. Lett. 132: 078203.
  39. Swinkels PJM, Stuij SG, Gong Z, Jonas H, van der Linden B, Bolhuis PG, Sacanna S, Woutersen S, Schall P (2021) Revealing conformational dynamics of colloidal alkanes. Nature Comm. 12: 2810.
  40. Kilpatrick JE, Pitzer KS, Spitzer R (1947) The thermodynamics and molecular structure of cyclopentane. J. Am. Chem. Soc. 69: 2483–2488.
  41. Poupko R, Luz Z, Zimmermann H (1982) Pseudorotation in cyclopentane. An experimental determination of the puckering amplitude by NMR in oriented solvents. J. Am. Chem. Soc. 104: 5307.
  42. Ocola EJ, Bauman LE, Laane J (2011) Vibrational spectra and structure of cyclopentane and its isotopomers. J. Phys. Chem. A 115: 6531.
  43. Kowalewski P, Frey H-M, Infanger D, Leutwyler S (2015) Probing the structure, pseudorotation, and radial vibrations of cyclopentane by femtosecond rotational Raman coherence spectroscopy. J. Phys. Chem. A 119: 11215.
Language: English
Page range: 21 - 29
Published on: Mar 14, 2025
Published by: American Society for Gravitational and Space Research
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2025 P. J. M. Swinkels, Z. Gong, S. Sacanna, W. V. Meyer, P. Schall, published by American Society for Gravitational and Space Research
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.