Have a personal or library account? Click to login

Agent-based model for microbial populations exposed to radiation (AMMPER) simulates yeast growth for deep-space experiments

Open Access
|Nov 2024

References

  1. Straume T, Slaba TC, Bhattacharya S, Braby LA. Cosmic-ray interaction data for designing biological experiments in space. Life Sci Space Res. 2017;13:51–59. doi:10.1016/j.lssr.2017.04.002
  2. Horneck G, Klaus DM, Mancinelli RL. Space Microbiology. Microbiol Mol Biol Rev. 2010;74:121–156. doi:10.1128/MMBR.00016-09
  3. Afshinnekoo E, Scott RT, MacKay MJ, Pariset E, Cekanaviciute E, Barker R, Gilroy S, Hassane D, Smith SM, Zwart SR, Nelman-Gonzalez M, Crucian BE, Ponomarev SA, Orlov OI, Shiba D, Muratani M, Yamamoto M, Richards SE, Vaishampayan PA, Meydan C, Foox J, Myrrhe J, Istasse E, Singh N, Venkateswaran K, Keune JA, Ray HE, Basner M, Miller J, Vitaterna MH, Taylor DM, Wallace D, Rubins K, Bailey SM, Grabham P, Costes SV, Mason CE, Beheshti A. Fundamental biological features of spaceflight: Advancing the field to enable deep-space exploration. Cell. 2020;183:1162–1184. doi:10.1016/j.cell.2020.10.050
  4. Furukawa S, Nagamatsu A, Nenoi M, Fujimori A, Kakinuma S, Katsube T, Wang B, Tsuruoka C, Shirai T, Nakamura AJ, Sakaue-Sawano A, Miyawaki A, Harada H, Kobayashi M, Kobayashi J, Kunieda T, Funayama T, Suzuki M, Miyamoto T, Hidema J, Yoshida Y, Takahashi A. Space radiation biology for “Living in Space.” BioMed Res Int. 2020:e4703286. doi:10.1155/2020/4703286
  5. Montesinos CA, Khalid R, Cristea O, Greenberger JS, Epperly MW, Lemon JA, Boreham DR, Popov D, Gorthi G, Ramkumar N, Jones JA. Space radiation protection countermeasures in microgravity and planetary exploration. Life. 2021;11:829. doi:10.3390/life11080829
  6. NASA LBLEO Science Working Group. 2018. Life Beyond Low Earth Orbit. Report of a science working group to the NASA Human Exploration and Operations Mission Directorate and Space Life and Physical Sciences Division.
  7. Blaber E, Boothby T, Carr CE, Everroad RC, Foster J, Galazka J, Lee JA, Lera M, Ricco A, Sanders L, Szewczyk N, Tahimic C, Todd P, Vaishampayan P, Vanapalli S, Zhang Y, Zitnik M, Harrison L. NASA Space Biology Beyond LEO Instrumentation & Science Series Science Working Group 2022 Annual Report. 2023 (No. ntrs. nasa.gov/citations/20230008417).
  8. Chancellor J, Nowadly C, Williams J, Aunon-Chancellor S, Chesal M, Looper J, Newhauser W. Everything you wanted to know about space radiation but were afraid to ask. J Environ Sci Health Part C Toxicol Carcinog. 2021;39:113–128. doi:10.1080/26896583.2021.1897273
  9. Coulombe JV, Harrisson G, Lewis BJ, El-Jaby S. Evolving radiological protection guidelines for exploration-class missions. Life Sci Space Res. 2022;doi:10.1016/j.lssr.2022.08.004
  10. Everroad RC, Foster J, Galazka JM, Jansson J, Lee JA, Lera MP, Perera I, Ricco A, Szewczyk N, Todd P, Zhang Y, Harrison L. NASA Space Biology Beyond LEO Instrumentation & Science Series - Science Working Group 2021 Annual Report. 2021. (No. ntrs. nasa.gov/citations/20210023324).
  11. Restier-Verlet J, El-Nachef L, Ferlazzo ML, Al-Choboq J, Granzotto A, Bouchet A, Foray N. Radiation on Earth or in space: what does it change? Int J Mol Sci. 2021;22. doi:10.3390/ijms22073739
  12. Mars K. 5 Hazards of Human Spaceflight. NASA. 2018; http://www.nasa.gov/hrp/5-hazards-of-human-spaceflight
  13. Ball N, Kagawa H, Hindupur A, Kostakis A, Hogan J, Villanueva A, Sharif S, Donovan F, Settles M, Sims K, Gresser A. 2021. BioNutrients-2: Improvements to the BioNutrients-1 nutrient production system. 50th International Conference on Environmental Systems. ICES-2021-331.
  14. Ball N, Kagawa H, Hindupur A, Sims K. 2020. BioNutrients-1: Development of an on-demand nutrient production system for long-duration missions.49th International Conference on Environmental Systems. ICES-2020-119. Presented at the 49th International Conference on Environmental Systems.
  15. Bijlani S, Stephens E, Singh NK, Venkateswaran K, Wang CCC. Advances in space microbiology. iScience. 2021;24:102395. doi:10.1016/j.isci.2021.102395
  16. Santomartino R, Zea L, Cockell CS. The smallest space miners: principles of space biomining. Extremophiles. 2022;26:7. doi:10.1007/s00792-021-01253-
  17. Massaro Tieze S, Liddell LC, Santa Maria SR, Bhattacharya S. BioSentinel: A biological CubeSat for deep space exploration. Astrobiology. 2020. doi:10.1089/ast.2019.2068
  18. Ricco AJ, Maria SRS, Hanel RP, Bhattacharya S. BioSentinel: A 6U nanosatellite for deep-space biological science. IEEE Aerosp Electron Syst Mag. 2020;35:6–18. doi:10.1109/MAES.2019.2953760
  19. Santa Maria SR, Marina DB, Massaro Tieze S, Liddell LC, Bhattacharya S. BioSentinel: Long-term Saccharomyces cerevisiae preservation for a deep space biosensor mission. Astrobiology. 2020;20:1–14. doi:10.1089/ast.2019.2073
  20. Bücker H. 1975. Biostack: a study of the biological effects on HZE galactic cosmic radiation. Biomedical Results of Apollo, NASA SP-368. National Aeronautics and Space Administration.
  21. Cucinotta FA, Wilson JW, Katz R, Atwell W, Badhwar GD, Shavers MR. Track structure and radiation transport model for space radiobiology studies. Adv Space Res. Proceedings of the F3.1, F3.4, F2.4 and F3.8 Symposia of COSPAR Scientific Commission F. 1996;18:183–194. doi:10.1016/0273-1177(96)00039-7
  22. Mileikowsky C, Cucinotta FA, Wilson JW, Gladman B, Horneck G, Lindegren L, Melosh J, Rickman H, Valtonen M, Zheng JQ. Natural transfer of viable microbes in space. Icarus. 2000;145:391–427. doi:10.1006/icar.1999.6317
  23. Zea L, Santa Maria SR, Ricco AJ. 7 - CubeSats for microbiology and astrobiology research In: Cappelletti C, Battistini S, Malphrus BK, editors. Cubesat Handbook. Academic Press; 2021. pp. 147–162. doi:10.1016/B978-0-12-817884-3.00007-2
  24. Kitts C, Ronzano K, Rasay R, Mas I, Williams P, Mahacek P, Minelli G, Hines J, Agasid E, Friedericks C, Piccini M, Parra M, Timucin L, Beasley C, Henschke M, Luzzi E, Mai N, McIntyre M, Ricks R, Squires D, Storment C, Tucker J, Yost B, Defouw G, Ricco A. Flight results from the GeneSat-1 biological microsatellite mission. Small Satell Conf. 2007.
  25. Minelli G, Kitts C, Ronzano K, Beasley C, Rasay R, Mas I, Williams P, Mahacek P, Shepard J, Acain J, Hines J, Agasid E, Friedericks C, Piccini M, Parra M, Timucin L, Henschke M, Luzzi E, Mai N, McIntyre M, Ricks R, Squires D, Storment C, Tucker J, Yost B, Defouw G, Ricco A. 2008. Extended life flight results from the GeneSat-1 biological microsatellite mission. Small Satellite Conference.
  26. Padgen MR, Liddell LC, Bhardwaj SR, Gentry D, Marina D, Parra M, Boone T, Tan M, Ellingson L, Rademacher A, Benton J, Schooley A, Mousavi A, Friedericks C, Hanel RP, Ricco AJ, Bhattacharya S, Maria SRS. BioSentinel: A biofluidic nanosatellite monitoring microbial growth and activity in deep space. Astrobiology. 2021;23. doi:10.1089/ast.2020.2305
  27. Ricco AJ, Parra M, Niesel D, Piccini M, Ly D, McGinnis M, Kudlicki A, Hines JW, Timucin L, Beasley C, Ricks R, McIntyre M, Friedericks C, Henschke M, Leung R, Diaz-Aguado M, Kitts C, Mas I, Rasay M, Agasid E, Luzzi E, Ronzano K, Squires D, Yost B. 2011. PharmaSat: drug dose response in microgravity from a free-flying integrated biofluidic/optical culture-and-analysis satellite. Presented at the Microfluidics, BioMEMS, and Medical Microsystems IX. International Society for Optics and Photonics. p. 79290T. doi:10.1117/12.881082
  28. Liddell LC, Gentry DM, Gilbert R, Marina D, Massaro Tieze S, Padgen MR, Akiyama K, Keenan K, Bhattacharya S, Santa Maria SR. BioSentinel: validating sensitivity of yeast biosensors to deep space relevant radiation. Astrobiology. 2023;23:648–656. doi:10.1089/ast.2022.0124
  29. Figliozzi G. 2023. What is the lunar explorer instrument for space biology applications? NASA. http://www.nasa.gov/ames/leia
  30. Kiefer J. The physical basis for the biological action of heavy ions. New J Phys. 2008;10:075004. doi:10.1088/1367-2630/10/7/075004
  31. Hellweger FL, Bucci V. 2009. A bunch of tiny individuals—individual-based modeling for microbes. Ecol Model. 2009;220:8–22. doi:10.1016/j.ecolmodel.2008.09.004
  32. Hellweger FL, Kianirad E. 2007. Individual-based modeling of phytoplankton: Evaluating approaches for applying the cell quota model. J Theor Biol. 2007;249:554–565 doi:10.1016/j.jtbi.2007.08.020
  33. Plante I, Wu H. 2014. RITRACKS: A software for simulation of stochastic radiation track structure, micro and nanodosimetry, radiation chemistry and DNA damage for heavy ions. Presented at the COSPAR Scientific Assembly. Moscow.
  34. Blyth BJ, Sykes PJ. Radiation-induced bystander effects: What are they, and how relevant are they to human radiation exposures? Radiat Res. 2011;176:139–157. doi:10.1667/RR2548.1
  35. Heeran AB, Berrigan HP, O’Sullivan J. The radiation-induced bystander effect (RIBE) and its connections with the hallmarks of cancer. Radiat Res. 2019;192:668–679. doi:10.1667/RR15489.1
  36. Hei TK, Zhou H, Ivanov VN, Hong M, Lieberman HB, Brenner DJ, Amundson SA, Geard CR. Mechanism of radiation-induced bystander effects: a unifying model. J Pharm Pharmacol. 2005;60:943–950. doi:10.1211/jpp.60.8.0001
  37. Singh A. 2023. AMMPER. Available at https://github.com/nasa/AMMPER.
  38. Jorgensen P, Edgington NP, Schneider BL, Rupeš I, Tyers M, Futcher B. The size of the nucleus increases as yeast cells grow. Mol Biol Cell. 2007;18:3523–3532. doi:10.1091/mbc.e06-10-0973
  39. Krawczyk K, Dzwinel W, Yuen DA. Nonlinear development of bacterial colony modeled with cellular automata and agent objects. Int J Mod Phys C. 2003;14:1385–1404. doi:10.1142/S0129183103006199
  40. Horowitz J, Normand MD, Corradini MG, Peleg M. Probabilistic model of microbial cell growth, division, and mortality. Appl Environ Microbiol. 2010;76:230–242. doi:10.1128/AEM.01527-09
  41. Allen RJ, Waclaw B. Bacterial growth: a statistical physicist’s guide. Rep Prog Phys. 2029;82:016601. doi:10.1088/1361-6633/aae546
  42. Simonsen LC, Slaba TC, Guida P, Rusek A. NASA’s first ground-based galactic cosmic ray simulator: Enabling a new era in space radiobiology research. PLOS Biol. 2020;18:e3000669. doi:10.1371/journal.pbio.3000669
  43. Curtis SB, Letaw JR. Galactic cosmic rays and cell-hit frequencies outside the magnetosphere. Adv Space Res. 1989;9:293–298. doi:10.1016/0273-1177(89)90452-3
  44. Kim M-HY, Rusek A, Cucinotta FA. Issues for simulation of galactic cosmic ray exposures for radiobiological research at ground-based accelerators. Front Oncol. 2015;5.
  45. Stewart RD, Yu VK, Georgakilas AG, Koumenis C, Park JH, Carlson DJ. Effects of radiation quality and oxygen on clustered DNA lesions and cell death. Radiat Res. 2011;176:587–602. doi:10.1667/RR2663.1
  46. Wingate CL, Baum JW. Measured radial distributions of dose and LET for alpha and proton beams in hydrogen and tissue-equivalent gas. Radiat Res. 1976;65:1–19. doi:10.2307/3574282
  47. Ferradini C, Jay-Gerin J-P. The effect of pH on water radiolysis: a still open question — a minireview. Res Chem Intermed. 2000;26:549–565. doi:10.1163/156856700X00525
  48. Attri P, Kim YH, Park DH, Park JH, Hong YJ, Uhm HS, Kim K-N, Fridman A, Choi EH. Generation mechanism of hydroxyl radical species and its lifetime prediction during the plasma-initiated ultraviolet (UV) photolysis. Sci Rep. 2015;5:9332. doi:10.1038/srep09332
  49. Krumova K, Cosa G. Overview of reactive oxygen species. Singlet Oxygen: Applications in Biosciences and Nanosciences, Comprehensive Series in Photochemical & Photobiological Sciences. London: Royal Society of Chemistry; 2016, 1–12.
  50. Plante I, Cucinotta F. Simulation of the radiolysis of water using Green’s functions of the diffusion equation. Radiat Prot Dosimetry. 2015;166. doi:10.1093/rpd/ncv179
  51. Thomas JK. Rates of reaction of the hydroxyl radical. Trans Faraday Soc. 1965;61:702. doi:10.1039/tf9656100702
  52. Le Caër S. 2011. Water radiolysis: influence of oxide surfaces on H2 production under ionizing radiation. Water. 2011;3:235–253. doi:10.3390/w3010235
  53. Cucinotta FA, Wilson JW, Katz R, Atwell W, Badhwar GD, Shavers MR. Track structure and radiation transport model for space radiobiology studies. Adv Space Res. Proceedings of the F3.1, F3.4, F2.4 and F3.8 Symposia of COSPAR Scientific Commission F. 1996;18:183–194. doi:10.1016/0273-1177(96)00039-7
  54. Nikjoo H, O’Neill P, Terrissol M, Goodhead DT. Quantitative modelling of DNA damage using Monte Carlo track structure method. Radiat Environ Biophys. 1999;38:31–38. doi:10.1007/s004110050135
  55. Erixon K, Cedervall B. Linear induction of DNA double-strand breakage with X-ray dose, as determined from DNA fragment size distribution. Radiat Res. 1995;142:153–162. doi:10.2307/3579023
  56. Ponomarev AL, George K, Cucinotta FA. Computational model of chromosome aberration yield induced by high- and low-LET radiation exposures. Radiat Res. 2012;177:727–737. doi:10.1667/RR2659.1
  57. Madeo F, Fröhlich E, Ligr M, Grey M, Sigrist SJ, Wolf DH, Fröhlich K-U. Oxygen stress: a regulator of apoptosis in yeast. J Cell Biol. 1999;145:757–767. doi:10.1083/jcb.145.4.757
  58. Karschau J, de Almeida C, Richard MC, Miller S, Booth IR, Grebogi C, de Moura APS. A matter of life or death: modeling DNA damage and repair in bacteria. Biophys J. 2011;100:814–821. doi:10.1016/j.bpj.2010.12.3713
  59. Lisby M, Mortensen UH, Rothstein R. Colocalization of multiple DNA double-strand breaks at a single Rad52 repair centre. Nat Cell Biol. 2003;5:572–577. doi:10.1038/ncb997
  60. Plante I, Slaba T, Shavers Z, Hada M. A bi-exponential repair algorithm for radiation-induced double-strand breaks: application to simulation of chromosome aberrations. Genes. 2019;10:936. doi:10.3390/genes10110936
  61. Lettier G, Feng Q, Mayolo AA de, Erdeniz N, Reid RJD, Lisby M, Mortensen UH, Rothstein R. The role of DNA double-strand breaks in spontaneous homologous recombination in S. cerevisiae. PLOS Genet. 2006;2:e194. doi:10.1371/journal.pgen.0020194
  62. Kiefer J, Egenolf R, Ikpeme S. Heavy ion-induced DNA double-strand breaks in yeast. Radiat Res. 2002;157:141–148. doi:10.1667/0033-7587(2002)157[0141:HIIDDS]2.0.CO;2
  63. Kost M, Kiefer J. Biological action of heavy ion irradiation on individual yeast cells In: McCormack PD, Swenberg CE, Bücker H, editors. Terrestrial Space Radiation and Its Biological Effects, Nato ASI Series. Boston, MA: Springer US; 1988, 197–203. doi:10.1007/978-1-4613-1567-4_14
  64. Kiefer J, Müller J, Götzen J. 1988. Mitotic recombination in continuously γ-irradiated diploid yeast. Radiat Res. 1988;113:71–78. doi:10.2307/3577181
  65. Kiefer J, Wagner E. Radiosensitivity of continuous cultures: experiments with diploid yeast. Radiat Res. 1975;63:336–345. doi:10.2307/3574158
  66. Nicholson WL, Ricco AJ. Nanosatellites for biology in space: in situ measurement of Bacillus subtilis spore germination and growth after 6 months in low Earth orbit on the O/OREOS Mission. Life. 2020;10:1. doi:10.3390/life10010001
  67. Padgen MR, Lera MP, Parra MP, Ricco AJ, Chin M, Chinn TN, Cohen A, Friedericks CR, Henschke MB, Snyder TV, Spremo SM, Wang J-H, Matin AC. EcAMSat spaceflight measurements of the role of σs in antibiotic resistance of stationary phase Escherichia coli in microgravity. Life Sci Space Res. 2020;24:18–24. doi:10.1016/j.lssr.2019.10.007
  68. Pross HD, Casares A, Kiefer J. Induction and repair of DNA double-strand breaks under irradiation and microgravity. Radiat Res. 153:521–525. doi:10.1667/0033-7587(2000)153[0521:IARODD]2.0.CO;2
  69. Pross HD, Kiefer J. Repair of cellular radiation damage in space under microgravity conditions. Radiat Environ Biophys. 1999;38:133–138. doi:10.1007/s004110050149
  70. Takahashi A, Ohnishi K, Takahashi S, Masukawa M, Sekikawa K, Amano T, Nakano T, Nagaoka S, Ohnishi T. The effects of microgravity on induced mutation in Escherichia coli and Saccharomyces cerevisiae. Adv Space Res. 2001;28:555–561. doi:10.1016/S0273-1177(01)00391-X
  71. Ware JH, Sanzari J, Avery S, Sayers C, Krigsfeld G, Nuth M, Wan XS, Rusek A, Kennedy AR. Effects of proton radiation dose, dose rate and dose fractionation on hematopoietic cells in mice. Radiat Res. 2010;174:325–330. doi:10.1667/RR1979.1
  72. Bujarrabal A, Schumacher B. 2016. Hormesis running hot and cold. Cell Cycle. 2016;15(24);3335–3336. doi: 10.1080/15384101.2016.1235859
  73. Calabrese E.J. Hormetic mechanisms. Crit Rev Toxicol. 2013;43:580–606. doi:10.3109/10408444.2013.808172
  74. Kabilan U, Graber TE, Alain T, Klokov D. 2020. Ionizing radiation and translation control: a link to radiation hormesis? Int J Mol Sci. 2020;21:6650. doi:10.3390/ijms21186650
  75. Mathieu A, Fleurier S, Frénoy A, Dairou J, Bredeche M-F, Sanchez-Vizuete P, Song X, Matic I. Discovery and function of a general core hormetic stress response in E. coli induced by sublethal concentrations of antibiotics. Cell Rep. 2016;17:46–57. doi:10.1016/j.celrep.2016.09.001
  76. Vaiserman AM. Radiation hormesis: historical perspective and implications for low-dose cancer risk assessment. Dose-Response 2010;8. doi:10.2203/dose-response.09-037.Vaiserman
  77. Keszenman DJ, Sutherland BM. Yields of clustered DNA damage induced by charged-particle radiations of similar kinetic energy per nucleon: LET dependence in different DNA microenvironments. Radiat Res. 2010;174:238–250. doi:10.1667/RR2093.1
  78. Li Y, Reynolds P, O’Neill P, Cucinotta FA. Modeling damage complexity-dependent non-homologous end-joining repair pathway. PLOS ONE. 2014;9:e85816. doi:10.1371/journal.pone.0085816
  79. Lomax ME, Folkes LK, O’Neill P. Biological consequences of radiation-induced DNA damage: relevance to radiotherapy. Clin Oncol. Adv Clin Radiobiol. 2013;25:578–585. doi:10.1016/j.clon.2013.06.007
  80. Moscariello M, Sutherland B. Saccharomyces cerevisiae-based system for studying clustered DNA damages. Radiat Environ Biophys. 2010;49:447–456. doi:10.1007/s00411-010-0303-3
  81. Friedland W, Dingfelder M, Kundrát P, Jacob P. Track structures, DNA targets and radiation effects in the biophysical Monte Carlo simulation code PARTRAC. Mutat Res Mol Mech Mutagen 2911;711:28–40. doi:10.1016/j.mrfmmm.2011.01.003
  82. Prise KM, Schettino G, Folkard M, Held KD. New insights on cell death from radiation exposure. Lancet Oncol. 2005;6:520–528. doi:10.1016/S1470-2045(05)70246-1
  83. Harper JV, Anderson JA, O’Neill P. Radiation induced DNA DSBs: contribution from stalled replication forks? DNA Repair. 2010;9:907–913. doi:10.1016/j.dnarep.2010.06.002
Language: English
Page range: 159 - 176
Published on: Nov 23, 2024
Published by: American Society for Gravitational and Space Research
In partnership with: Paradigm Publishing Services
Publication frequency: 2 times per year

© 2024 Amrita Singh, Sergio R. Santa Maria, Diana M. Gentry, Lauren C. Liddell, Matthew P. Lera, Jessica A. Lee, published by American Society for Gravitational and Space Research
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.