References
- Abdel Ghafar MT (2020) An overview of the classical and tissue-derived renin-angiotensin-aldosterone system and its genetic polymorphisms in essential hypertension. Steroids: 163.
https://doi.org/10.1016/j.steroids.2020.108701 - Aleshcheva G, Bauer J, Hemmersbach R, Slumstrup L, Wehland M, Infanger M, & Grimm D (2016) Scaffold-free tissue formation under real and simulated microgravity conditions. In Basic and Clinical Pharmacology and Toxicology (Vol. 119).
https://doi.org/10.1111/bcpt.12561 - Allen JB, Ludtka C, & James BD (2023) Sex as a biological variable in tissue engineering and regenerative medicine. Annual Review of Biomedical Engineering 25.
- Baio J, Martinez AF, Silva I, Hoehn CV, Countryman S, Bailey L, Hasaniya N, Pecaut MJ, & Kearns-Jonker M (2018) Cardiovascular progenitor cells cultured aboard the International Space Station exhibit altered developmental and functional properties. Npj Microgravity 4(1).
https://doi.org/10.1038/s41526-018-0048-x - Behnke BJ, Stabley JN, McCullough DJ, Davis RT, Dominguez JM, Muller-Delp JM, & Delp MD (2013) Effects of spaceflight and ground recovery on mesenteric artery and vein constrictor properties in mice. FASEB Journal, 27(1).
https://doi.org/10.1096/fj.12-218503 - Bennett MR, Sinha S, & Owens GK (2016) Vascular Smooth Muscle Cells in Atherosclerosis. Circulation Research, 118(4).
https://doi.org/10.1161/CIRCRESAHA.115.306361 - Berridge MJ (2008) Smooth muscle cell calcium activation mechanisms. Journal of Physiology 586(21).
https://doi.org/10.1113/jphysiol.2008.160440 - Blaber E, Marçal H, & Burns BP (2010) Bioastronautics: The influence of microgravity on astronaut health. Astrobiology 10(5).
https://doi.org/10.1089/ast.2009.0415 - Chen, Z, Luo, Q, Lin, C, Kuang, D, & Song, G. (2016). Simulated microgravity inhibits osteogenic differentiation of mesenchymal stem cells via depolymerizing F-actin to impede TAZ nuclear translocation. Scientific Reports 6.
https://doi.org/10.1038/srep30322 - Clary JL, France CS, Lind K, Shi R, Alexander JS, Richards JT, Scott RS, Wang J, Lu X-H, & Harrison L (2022) Development of an inexpensive 3D clinostat and comparison with other microgravity simulators using Mycobacterium marinum. Frontiers in Space Technologies 3.
https://doi.org/10.3389/frspt.2022.1032610 - Coinu R, Chiaviello A, Galleri G, Franconi F, Crescenzi E, & Palumbo G (2006) Exposure to modeled microgravity induces metabolic idleness in malignant human MCF-7 and normal murine VSMC cells. FEBS Letters, 580(10).
https://doi.org/10.1016/j.febslet.2006.03.078 - Colinas O, Moreno-Domínguez A, Zhu HL, Walsh EJ, Pérez-García MT, Walsh MP, & Cole WC (2015) α5-Integrin-mediated cellular signaling contributes to the myogenic response of cerebral resistance arteries. Biochemical Pharmacology 97(3).
https://doi.org/10.1016/j.bcp.2015.08.088 - Dabertrand F, Porte Y, MacRez N, & Morel JL (2012) Spaceflight regulates ryanodine receptor subtype 1 in portal vein myocytes in the opposite way of hypertension. Journal of Applied Physiology, 112(3).
https://doi.org/10.1152/japplphysiol.00733.2011 - Davis CM, Allen AR, & Bowles DE (2021) Consequences of space radiation on the brain and cardiovascular system. Journal of Environmental Science and Health, Part C: Toxicology and Carcinogenesis, 39(2).
https://doi.org/10.1080/26896583.2021.1891825 - Demontis GC, Germani MM, Caiani EG, Barravecchia I, Passino C, & Angeloni D (2017) Human pathophysiological adaptations to the space environment. Frontiers in Physiology 8.
https://doi.org/10.3389/fphys.2017.00547 - Frismantiene A, Philippova M, Erne P, & Resink T J (2018) Smooth muscle cell-driven vascular diseases and molecular mechanisms of VSMC plasticity. Cellular Signalling 52.
https://doi.org/10.1016/j.cellsig.2018.08.019 - Gao R, & Chilibeck PD (2020) Nutritional interventions during bed rest and spaceflight: prevention of muscle mass and strength loss, bone resorption, glucose intolerance, and cardiovascular problems. Nutrition Research 82.
https://doi.org/10.1016/j.nutres.2020.07.001 - Ghosh P, Behnke BJ, Stabley JN, Kilar CR, Park Y, Narayanan A, Alwood JS, Shirazi-Fard Y, Schreurs AS, Globus RK, & Delp MD (2016) Effects of high-LET radiation exposure and hindlimb unloading on skeletal muscle resistance artery vasomotor properties and cancellous bone microarchitecture in mice. Radiation Research 185(3).
https://doi.org/10.1667/RR4308.1 - Ghosh P, Mora Solis FR, Dominguez JM, Spier SA, Donato AJ, Delp MD, & Muller-Delp JM (2015) Exercise training reverses aging-induced impairment of myogenic constriction in skeletal muscle arterioles. Journal of Applied Physiology 118(7).
https://doi.org/10.1152/japplphysiol.00277.2014 - Globus RK, & Morey-Holton E (2016) Hindlimb unloading: Rodent analog for microgravity. Journal of Applied Physiology120(10).
https://doi.org/10.1152/japplphysiol.00997.2015 - Grimm D, Wehland M, Pietsch J, Aleshcheva G, Wise P, Van Loon J, Ulbrich C, Magnusson N E, Infanger M, & Bauer J (2014) Growing tissues in real and simulated microgravity: New methods for tissue engineering. Tissue Engineering - Part B: Reviews 20(6).
https://doi.org/10.1089/ten.teb.2013.0704 - Guéguinou M, Chantome A, Fromont G, Bougnoux P, Vandier C, & Potier-Cartereau M (2014) KCa and Ca2+ channels: The complex thought. Biochimica et Biophysica Acta - Molecular Cell Research 1843(10).
https://doi.org/10.1016/j.bbamcr.2014.02.019 - Haga JH, Li YSJ, & Chien S (2007) Molecular basis of the effects of mechanical stretch on vascular smooth muscle cells. Journal of Biomechanics 40(5).
https://doi.org/10.1016/j.jbiomech.2006.04.011 - Hammond TG, & Hammond JM (2001) Optimized suspension culture: The rotating-wall vessel. American Journal of Physiology - Renal Physiology 281(5): 50–51.
https://doi.org/10.1152/ajprenal.2001.281.1.f12 - Hawliczek A, Brix B, Al Mutawa S, Alsuwaidi H, Du Plessis S, Gao Y, Qaisar R, Siddiqui R, Elmoselhi AB, & Goswami N (2022) Hind-limb unloading in rodents: Current evidence and perspectives. Acta Astronautica, 195.
https://doi.org/10.1016/j.actaastro.2022.03.008 - Heckenkamp J, Nigri GR, Waterman PR, Overhaus M, Kossodo SC, & LaMuraglia GM (2004) γ-irradiation modulates vascular smooth muscle cell and extracellular matrix function: Implications for neointimal development. Journal of Vascular Surgery 39(5).
https://doi.org/10.1016/j.jvs.2003.12.021 - Herranz R, Anken R, Boonstra J, Braun M, Christianen PCM, De Geest M, Hauslage J, Hilbig R, Hill RJA, Lebert M, Javier Medina F, Vagt N, Ullrich O, Van Loon JJWA, & Hemmersbach R (2013) Ground-based facilities for simulation of microgravity: Organism-specific recommendations for their use, and recommended terminology. Astrobiology 13(1).
https://doi.org/10.1089/ast.2012.0876 - Hughson RL, Helm A, & Durante M (2018) Heart in space: Effect of the extraterrestrial environment on the cardiovascular system. In Nature Reviews Cardiology 15(3).
https://doi.org/10.1038/nrcardio.2017.157 - Hughson RL, Robertson A D, Arbeille P, Shoemaker J K, Rush J W E, Fraser K S, & Greaves D K (2016) Increased postflight carotid artery stiffness and inflight insulin resistance resulting from 6-mo spaceflight in male and female astronauts. American Journal of Physiology - Heart and Circulatory Physiology 310(5).
https://doi.org/10.1152/ajpheart.00802.2015 - Jiang M, Liu Z, Shao J, Zhou J, Wang H, Song C, Li X, Wang L, Xu Q, Liu X, Lin L, & Zhang R (2022) Estrogen receptor α regulates phenotypic switching and proliferation of vascular smooth muscle cells through the NRF1-OMI-mitophagy signaling pathway under simulated microgravity. Frontiers in Physiology 13.
https://doi.org/10.3389/fphys.2022.1039913 - Jiang M, Lyu Q, Bai Y G, Liu H, Yang J, Cheng JH, Zheng M, & Ma J (2018) Focal adhesions are involved in simulated-microgravity-induced basilar and femoral arterial remodelling in rats. Canadian Journal of Physiology and Pharmacology 96(8).
https://doi.org/10.1139/cjpp-2017-0665 - Kang H, Fan Y, Sun A, Jia X, & Deng X (2013) Simulated microgravity exposure modulates the phenotype of cultured vascular smooth muscle cells. Cell Biochemistry and Biophysics, 66(1).
https://doi.org/10.1007/s12013-012-9460-0 - Kang H, Liu M, Fan Y, & Deng X (2013) A potential gravity-sensing role of vascular smooth muscle cell glycocalyx in altered gravitational stimulation. Astrobiology 13(7).
https://doi.org/10.1089/ast.2012.0944 - Kang H, Wu C, Qu Y, Gao M, Zhang W, Sun A, & Deng X (2019) Adaptation of glycocalyx, nitric oxide synthase expression and vascular cell apoptosis in conduit arteries of tail-suspended rats. Clinical and Experimental Pharmacology and Physiology 46(11).
https://doi.org/10.1111/1440-1681.13121 - Lacolley P, Regnault V, Nicoletti A, Li Z, & Michel JB (2012) The vascular smooth muscle cell in arterial pathology: A cell that can take on multiple roles. Cardiovascular Research 95(2).
https://doi.org/10.1093/cvr/cvs135 - Lawley JS, Petersen LG, Howden EJ, Sarma S, Cornwell WK, Zhang R, Whitworth LA, Williams MA, & Levine BD (2017) Effect of gravity and microgravity on intracranial pressure. Journal of Physiology 595(6).
https://doi.org/10.1113/JP273557 - Leguy CAD, Delfos R, Pourquie MJBM, Poelma C, Westerweel J, & van Loon JJWA (2017) Fluid dynamics during Random Positioning Machine micro-gravity experiments. Advances in Space Research 59(12).
https://doi.org/10.1016/j.asr.2017.03.009 - Liu ZF, Wang HM, Jiang M, Wang L, Lin LJ, Zhao YZ, Shao JJ, Zhou JJ, Xie MJ, Li X, & Zhang R (2021) Mitochondrial oxidative stress enhances vasoconstriction by altering calcium homeostasis in cerebrovascular smooth muscle cells under simulated microgravity. Biomedical and Environmental Sciences 34(3).
https://doi.org/10.3967/bes2021.001 - Locatelli, L, Castiglioni, S, & Maier, J. A. M. (2022). From Cultured Vascular Cells to Vessels: The Cellular and Molecular Basis of Vascular Dysfunction in Space. In Frontiers in Bioengineering and Biotechnology (Vol. 10).
https://doi.org/10.3389/fbioe.2022.862059 - Low LA, & Giulianotti MA (2020) Tissue chips in space: Modeling human diseases in microgravity. Pharmaceutical Research 37(1).
https://doi.org/10.1007/s11095-019-2742-0 - Ludtka C, Moore E, & Allen JB (2021) The effects of simulated microgravity on macrophage phenotype. Biomedicines 9(9).
https://doi.org/10.3390/biomedicines9091205 - Ludtka C, Silberman J, Moore E, & Allen JB (2021) Macrophages in microgravity: The impact of space on immune cells. Npj Microgravity 7(1).
https://doi.org/10.1038/s41526-021-00141-z - Lv H, & Ai D (2022) Hippo/yes-associated protein signaling functions as a mechanotransducer in regulating vascular homeostasis. Journal of Molecular and Cellular Cardiology 162.
https://doi.org/10.1016/j.yjmcc.2021.09.007 - Maier JAM, Cialdai F, Monici M, & Morbidelli L (2015) The impact of microgravity and hypergravity on endothelial cells. BioMed Research International 2015.
https://doi.org/10.1155/2015/434803 - Malorni W, Straface E, Matarrese P, Ascione B, Coinu R, Canu S, Galluzzo P, Marino M, & Franconi F (2008) Redox state and gender differences in vascular smooth muscle cells. FEBS Letters 582(5).
https://doi.org/10.1016/j.febslet.2008.01.034 - Mitchell JA, Ali F, Bailey L, Moreno L, & Harrington LS (2008) Role of nitric oxide and prostacyclin as vasoactive hormones released by the endothelium. Experimental Physiology 93(1).
https://doi.org/10.1113/expphysiol.2007.038588 - Morel JL, Boittin FX, Halet G, Arnaudeau S, Mironneau C, & Mironneau J (1997) Effect of a 14-day hindlimb suspension on cytosolic Ca2+ concentration in rat portal vein myocytes. American Journal of Physiology - Heart and Circulatory Physiology 273(6): 42–46.
https://doi.org/10.1152/ajpheart.1997.273.6.h2867 - Patel S (2020) The effects of microgravity and space radiation on cardiovascular health: From low-Earth orbit and beyond. IJC Heart and Vasculature 30.
https://doi.org/10.1016/j.ijcha.2020.100595 - Pietsch J, Bauer J, Egli M, Infanger M, Wise P, Ulbrich C, & Grimm D (2011) The effects of weightlessness on the human organism and mammalian cells. Current Molecular Medicine 11(5).
https://doi.org/10.2174/156652411795976600 - Poon C (2020) Factors implicating the validity and interpretation of mechanobiology studies in simulated microgravity environments. Engineering Reports 2(10).
https://doi.org/10.1002/eng2.12242 - Prisby RD, Behnke BJ, Allen MR, & Delp MD (2015) Effects of skeletal unloading on the vasomotor properties of the rat femur principal nutrient artery. Journal of Applied Physiology 118(8).
https://doi.org/10.1152/japplphysiol.00576.2014 - Rabineau J, Issertine M, Hoffmann F, Gerlach D, Caiani EG, Haut B, van de Borne P, Tank J, & Migeotte PF (2022) Cardiovascular deconditioning and impact of artificial gravity during 60-day head-down bed rest—Insights from 4D flow cardiac MRI. Frontiers in Physiology 13.
https://doi.org/10.3389/fphys.2022.944587 - Ramaswamy V, Dirr EW, & Allen, JB (2016) The effect of simulated microgravity on differentiation of porcine blood-derived vascular stem cells. Stem Cells and Development 25(4).
https://doi.org/10.1089/scd.2015.0297 - Ramaswamy V, Goins A, & Allen JB (2016) Altered functions of human blood-derived vascular endothelial cells by simulated microgravity. Gravitational and Space Research 4(1).
https://doi.org/10.2478/gsr-2016-0001 - Ren Z, Harriot AD, Mair DB, Chung MK, Lee PHU, & Kim DH (2023) Biomanufacturing of 3D tissue constructs in microgravity and their applications in human pathophysiological studies. Advanced Healthcare Materials 12(23).
https://doi.org/10.1002/adhm.202300157 - Scott JM, Stoudemire J, Dolan L, & Downs M (2022) Leveraging spaceflight to advance cardiovascular research on Earth. Circulation Research 130(6).
https://doi.org/10.1161/CIRCRESAHA.121.319843 - Scotti MM, Wilson BK, Bubenik JL, Yu F, Swanson MS, & Allen JB (2024) Spaceflight effects on human vascular smooth muscle cell phenotype and function. npj Microgravity 10(41).
https://doi.org/10.1038/s41526-024-00380-w - Shi ZD, & Tarbell JM (2011) Fluid flow mechanotransduction in vascular smooth muscle cells and fibroblasts. Annals of Biomedical Engineering 39(6).
https://doi.org/10.1007/s10439-011-0309-2 - Sofronova SI, Tarasova OS, Gaynullina D, Borzykh AA, Behnke BJ, Stabley JN, McCullough DJ, Maraj JJ, Hanna M, Muller-Delp JM, Vinogradova OL, & Delp MD (2015) Spaceflight on the Bion-M1 biosatellite alters cerebral artery vasomotor and mechanical properties in mice. Journal of Applied Physiology 118(7).
https://doi.org/10.1152/japplphysiol.00976.2014 - Soloviev AI, & Kizub IV (2019) Mechanisms of vascular dysfunction evoked by ionizing radiation and possible targets for its pharmacological correction. Biochemical Pharmacology 179.
https://doi.org/10.1016/j.bcp.2018.11.019 - Soloviev AI, Tishkin SM, Zelensky SN, Ivanova IV, Kizub IV, Pavlova AA, & Moreland RS (2005) Ionizing radiation alters myofilament calcium sensitivity in vascular smooth muscle: Potential role of protein kinase C. American Journal of Physiology - Regulatory Integrative and Comparative Physiology 289(3): 58.
https://doi.org/10.1152/ajpregu.00748.2004 - Soucy KG, Lim HK, Kim JH, Oh Y, Attarzadeh DO, Sevinc B, Kuo MM, Shoukas AA, Vazquez ME, & Berkowitz DE (2011) HZE 56Fe-ion irradiation induces endothelial dysfunction in rat aorta: Role of xanthine oxidase. Radiation Research 176(4).
https://doi.org/10.1667/RR2598.1 - Su YT, Cheng YP, Zhang X, Xie XP, Chang YM, & Bao J X (2020) Acid sphingomyelinase/ceramide mediates structural remodeling of cerebral artery and small mesenteric artery in simulated weightless rats. Life Sciences 243.
https://doi.org/10.1016/j.lfs.2019.117253 - Sun Y, Kuang Y, & Zuo Z (2021) The emerging role of macrophages in immune system dysfunction under real and simulated microgravity conditions. International Journal of Molecular Sciences 22(5).
https://doi.org/10.3390/ijms22052333 - Tarasova OS, Kalenchuk VU, Borovik AS, Golubinskaya VO, Delp MD, & Vinogradova OL (2020) Simulated microgravity induces regionally distinct neurovascular and structural remodeling of skeletal muscle and cutaneous arteries in the rat. Frontiers in Physiology 11.
https://doi.org/10.3389/fphys.2020.00675 - Tanaka K, Nishimura N, & Kawai Y (2017) Adaptation to microgravity, deconditioning, and countermeasures. Journal of Physiological Sciences 67(2).
https://doi.org/10.1007/s12576-016-0514-8 - Vernice NA, Meydan C, Afshinnekoo E, & Mason CE (2020) Long-term spaceflight and the cardiovascular system. Precision Clinical Medicine 3(4).
https://doi.org/10.1093/PCMEDI/PBAA022 - Watenpaugh DE (2016) Analogs of microgravity: Head-down tilt and water immersion. Journal of Applied Physiology120(8).
https://doi.org/10.1152/japplphysiol.00986.2015 - Wilkerson MK, Lesniewski LA, Golding EM, Bryan RM, Amin A, Wilson E, & Delp MD (2005) Simulated microgravity enhances cerebral artery vasoconstriction and vascular resistance through endothelial nitric oxide mechanism. American Journal of Physiology - Heart and Circulatory Physiology, 288(4): 57.
https://doi.org/10.1152/ajpheart.00925.2004 - Williams JP (2023) Evaluation of models used to assess effects and countermeasures of microgravity, with specific respect to their utility in simulating and/or predicting space-related outcomes. NASA STI Repository. NASA/CR–20220018919
- Wuest SL, Richard S, Kopp S, Grimm D, & Egli M. (2015) Simulated microgravity: Critical review on the use of random positioning machines for mammalian cell culture. BioMed Research International 2015.
https://doi.org/10.1155/2015/971474 - Xue JH, Chen LH, Zhao HZ, Pu YD, Feng HZ, Ma YG, Ma J, Chang YM, Zhang ZM, & Xie MJ (2011) Differential regulation and recovery of intracellular Ca2+ in cerebral and small mesenteric arterial smooth muscle cells of simulated microgravity rat. PLoS ONE 6(5).
https://doi.org/10.1371/journal.pone.0019775 - Xue JH, Zhang LF, Jin M, & Xie MJ (2007) Differential regulation of L-type Ca2+ channels in cerebral and mesenteric arteries after simulated microgravity in rats and its intervention by standing. American Journal of Physiology - Heart and Circulatory Physiology 293(1).
https://doi.org/10.1152/ajpheart.01229.2006 - Yatagai F, Honma M, Dohmae N, & Ishioka N (2019) Biological effects of space environmental factors: A possible interaction between space radiation and microgravity. Life Sciences in Space Research 20.
https://doi.org/10.1016/j.lssr.2018.10.004 - Zhang B, Chen L, Bai YG, Song JB, Cheng JH, Ma HZ, Ma J, & Xie MJ (2020) miR-137 and its target T-type CaV3.1 channel modulate dedifferentiation and proliferation of cerebrovascular smooth muscle cells in simulated microgravity rats by regulating calcineurin/NFAT pathway. Cell Proliferation 53(3).
https://doi.org/10.1111/cpr.12774 - Zhang LF, & Hargens AR (2018) Spaceflight-induced intracranial hypertension and visual impairment: Pathophysiology and countermeasures. Physiological Reviews 98(1).
https://doi.org/10.1152/physrev.00017.2016 - Zhang R, Bai YG, Lin LJ, Bao JX, Zhang YY, Tang H, Cheng JH, Jia GL, Ren XL, & Jin M (2009) Blockade of at 1 receptor partially restores vasoreactivity, NOS expression, and superoxide levels in cerebral and carotid arteries of hindlimb unweighting rats. Journal of Applied Physiology 106(1).
https://doi.org/10.1152/japplphysiol.01278.2007 - Zhang R, Jiang M, Zhang J, Qiu Y, Li D, Li S, Liu J, Liu C, Fang Z, & Cao F (2020) Regulation of the cerebrovascular smooth muscle cell phenotype by mitochondrial oxidative injury and endoplasmic reticulum stress in simulated microgravity rats via the PERK-eIF2α-ATF4-CHOP pathway. Biochimica et Biophysica Acta - Molecular Basis of Disease 1866(8).
https://doi.org/10.1016/j.bbadis.2020.165799 - Zhang Y, Lau P, Pansky A, Kassack M, Hemmersbach R, & Tobiasch E (2014) The influence of simulated microgravity on purinergic signaling is different between individual culture and endothelial and smooth muscle cell coculture. BioMed Research International 2014.
https://doi.org/10.1155/2014/413708 - Zieman SJ, Melenovsky V, & Kass DA (2005) Mechanisms, pathophysiology, and therapy of arterial stiffness. Arteriosclerosis, Thrombosis, and Vascular Biology 25(5).
https://doi.org/10.1161/01.ATV.0000160548.78317.29