Abdel Ghafar MT (2020) An overview of the classical and tissue-derived renin-angiotensin-aldosterone system and its genetic polymorphisms in essential hypertension. Steroids: 163. https://doi.org/10.1016/j.steroids.2020.108701
Aleshcheva G, Bauer J, Hemmersbach R, Slumstrup L, Wehland M, Infanger M, & Grimm D (2016) Scaffold-free tissue formation under real and simulated microgravity conditions. In Basic and Clinical Pharmacology and Toxicology (Vol. 119). https://doi.org/10.1111/bcpt.12561
Allen JB, Ludtka C, & James BD (2023) Sex as a biological variable in tissue engineering and regenerative medicine. Annual Review of Biomedical Engineering25.
Baio J, Martinez AF, Silva I, Hoehn CV, Countryman S, Bailey L, Hasaniya N, Pecaut MJ, & Kearns-Jonker M (2018) Cardiovascular progenitor cells cultured aboard the International Space Station exhibit altered developmental and functional properties. Npj Microgravity4(1). https://doi.org/10.1038/s41526-018-0048-x
Blaber E, Marçal H, & Burns BP (2010) Bioastronautics: The influence of microgravity on astronaut health. Astrobiology10(5). https://doi.org/10.1089/ast.2009.0415
Clary JL, France CS, Lind K, Shi R, Alexander JS, Richards JT, Scott RS, Wang J, Lu X-H, & Harrison L (2022) Development of an inexpensive 3D clinostat and comparison with other microgravity simulators using Mycobacterium marinum. Frontiers in Space Technologies3. https://doi.org/10.3389/frspt.2022.1032610
Coinu R, Chiaviello A, Galleri G, Franconi F, Crescenzi E, & Palumbo G (2006) Exposure to modeled microgravity induces metabolic idleness in malignant human MCF-7 and normal murine VSMC cells. FEBS Letters, 580(10). https://doi.org/10.1016/j.febslet.2006.03.078
Dabertrand F, Porte Y, MacRez N, & Morel JL (2012) Spaceflight regulates ryanodine receptor subtype 1 in portal vein myocytes in the opposite way of hypertension. Journal of Applied Physiology, 112(3). https://doi.org/10.1152/japplphysiol.00733.2011
Davis CM, Allen AR, & Bowles DE (2021) Consequences of space radiation on the brain and cardiovascular system. Journal of Environmental Science and Health, Part C: Toxicology and Carcinogenesis, 39(2). https://doi.org/10.1080/26896583.2021.1891825
Demontis GC, Germani MM, Caiani EG, Barravecchia I, Passino C, & Angeloni D (2017) Human pathophysiological adaptations to the space environment. Frontiers in Physiology8. https://doi.org/10.3389/fphys.2017.00547
Frismantiene A, Philippova M, Erne P, & Resink T J (2018) Smooth muscle cell-driven vascular diseases and molecular mechanisms of VSMC plasticity. Cellular Signalling52. https://doi.org/10.1016/j.cellsig.2018.08.019
Gao R, & Chilibeck PD (2020) Nutritional interventions during bed rest and spaceflight: prevention of muscle mass and strength loss, bone resorption, glucose intolerance, and cardiovascular problems. Nutrition Research82. https://doi.org/10.1016/j.nutres.2020.07.001
Ghosh P, Behnke BJ, Stabley JN, Kilar CR, Park Y, Narayanan A, Alwood JS, Shirazi-Fard Y, Schreurs AS, Globus RK, & Delp MD (2016) Effects of high-LET radiation exposure and hindlimb unloading on skeletal muscle resistance artery vasomotor properties and cancellous bone microarchitecture in mice. Radiation Research185(3). https://doi.org/10.1667/RR4308.1
Ghosh P, Mora Solis FR, Dominguez JM, Spier SA, Donato AJ, Delp MD, & Muller-Delp JM (2015) Exercise training reverses aging-induced impairment of myogenic constriction in skeletal muscle arterioles. Journal of Applied Physiology118(7). https://doi.org/10.1152/japplphysiol.00277.2014
Grimm D, Wehland M, Pietsch J, Aleshcheva G, Wise P, Van Loon J, Ulbrich C, Magnusson N E, Infanger M, & Bauer J (2014) Growing tissues in real and simulated microgravity: New methods for tissue engineering. Tissue Engineering - Part B: Reviews20(6). https://doi.org/10.1089/ten.teb.2013.0704
Guéguinou M, Chantome A, Fromont G, Bougnoux P, Vandier C, & Potier-Cartereau M (2014) KCa and Ca2+ channels: The complex thought. Biochimica et Biophysica Acta - Molecular Cell Research1843(10). https://doi.org/10.1016/j.bbamcr.2014.02.019
Haga JH, Li YSJ, & Chien S (2007) Molecular basis of the effects of mechanical stretch on vascular smooth muscle cells. Journal of Biomechanics40(5). https://doi.org/10.1016/j.jbiomech.2006.04.011
Hawliczek A, Brix B, Al Mutawa S, Alsuwaidi H, Du Plessis S, Gao Y, Qaisar R, Siddiqui R, Elmoselhi AB, & Goswami N (2022) Hind-limb unloading in rodents: Current evidence and perspectives. Acta Astronautica, 195. https://doi.org/10.1016/j.actaastro.2022.03.008
Herranz R, Anken R, Boonstra J, Braun M, Christianen PCM, De Geest M, Hauslage J, Hilbig R, Hill RJA, Lebert M, Javier Medina F, Vagt N, Ullrich O, Van Loon JJWA, & Hemmersbach R (2013) Ground-based facilities for simulation of microgravity: Organism-specific recommendations for their use, and recommended terminology. Astrobiology13(1). https://doi.org/10.1089/ast.2012.0876
Hughson RL, Helm A, & Durante M (2018) Heart in space: Effect of the extraterrestrial environment on the cardiovascular system. In Nature Reviews Cardiology15(3). https://doi.org/10.1038/nrcardio.2017.157
Hughson RL, Robertson A D, Arbeille P, Shoemaker J K, Rush J W E, Fraser K S, & Greaves D K (2016) Increased postflight carotid artery stiffness and inflight insulin resistance resulting from 6-mo spaceflight in male and female astronauts. American Journal of Physiology - Heart and Circulatory Physiology310(5). https://doi.org/10.1152/ajpheart.00802.2015
Jiang M, Liu Z, Shao J, Zhou J, Wang H, Song C, Li X, Wang L, Xu Q, Liu X, Lin L, & Zhang R (2022) Estrogen receptor α regulates phenotypic switching and proliferation of vascular smooth muscle cells through the NRF1-OMI-mitophagy signaling pathway under simulated microgravity. Frontiers in Physiology13. https://doi.org/10.3389/fphys.2022.1039913
Jiang M, Lyu Q, Bai Y G, Liu H, Yang J, Cheng JH, Zheng M, & Ma J (2018) Focal adhesions are involved in simulated-microgravity-induced basilar and femoral arterial remodelling in rats. Canadian Journal of Physiology and Pharmacology96(8). https://doi.org/10.1139/cjpp-2017-0665
Kang H, Fan Y, Sun A, Jia X, & Deng X (2013) Simulated microgravity exposure modulates the phenotype of cultured vascular smooth muscle cells. Cell Biochemistry and Biophysics, 66(1). https://doi.org/10.1007/s12013-012-9460-0
Kang H, Liu M, Fan Y, & Deng X (2013) A potential gravity-sensing role of vascular smooth muscle cell glycocalyx in altered gravitational stimulation. Astrobiology13(7). https://doi.org/10.1089/ast.2012.0944
Kang H, Wu C, Qu Y, Gao M, Zhang W, Sun A, & Deng X (2019) Adaptation of glycocalyx, nitric oxide synthase expression and vascular cell apoptosis in conduit arteries of tail-suspended rats. Clinical and Experimental Pharmacology and Physiology46(11). https://doi.org/10.1111/1440-1681.13121
Lacolley P, Regnault V, Nicoletti A, Li Z, & Michel JB (2012) The vascular smooth muscle cell in arterial pathology: A cell that can take on multiple roles. Cardiovascular Research95(2). https://doi.org/10.1093/cvr/cvs135
Liu ZF, Wang HM, Jiang M, Wang L, Lin LJ, Zhao YZ, Shao JJ, Zhou JJ, Xie MJ, Li X, & Zhang R (2021) Mitochondrial oxidative stress enhances vasoconstriction by altering calcium homeostasis in cerebrovascular smooth muscle cells under simulated microgravity. Biomedical and Environmental Sciences34(3). https://doi.org/10.3967/bes2021.001
Locatelli, L, Castiglioni, S, & Maier, J. A. M. (2022). From Cultured Vascular Cells to Vessels: The Cellular and Molecular Basis of Vascular Dysfunction in Space. In Frontiers in Bioengineering and Biotechnology (Vol. 10). https://doi.org/10.3389/fbioe.2022.862059
Low LA, & Giulianotti MA (2020) Tissue chips in space: Modeling human diseases in microgravity. Pharmaceutical Research37(1). https://doi.org/10.1007/s11095-019-2742-0
Ludtka C, Silberman J, Moore E, & Allen JB (2021) Macrophages in microgravity: The impact of space on immune cells. Npj Microgravity7(1). https://doi.org/10.1038/s41526-021-00141-z
Lv H, & Ai D (2022) Hippo/yes-associated protein signaling functions as a mechanotransducer in regulating vascular homeostasis. Journal of Molecular and Cellular Cardiology162. https://doi.org/10.1016/j.yjmcc.2021.09.007
Maier JAM, Cialdai F, Monici M, & Morbidelli L (2015) The impact of microgravity and hypergravity on endothelial cells. BioMed Research International2015. https://doi.org/10.1155/2015/434803
Mitchell JA, Ali F, Bailey L, Moreno L, & Harrington LS (2008) Role of nitric oxide and prostacyclin as vasoactive hormones released by the endothelium. Experimental Physiology93(1). https://doi.org/10.1113/expphysiol.2007.038588
Morel JL, Boittin FX, Halet G, Arnaudeau S, Mironneau C, & Mironneau J (1997) Effect of a 14-day hindlimb suspension on cytosolic Ca2+ concentration in rat portal vein myocytes. American Journal of Physiology - Heart and Circulatory Physiology273(6): 42–46. https://doi.org/10.1152/ajpheart.1997.273.6.h2867
Patel S (2020) The effects of microgravity and space radiation on cardiovascular health: From low-Earth orbit and beyond. IJC Heart and Vasculature30. https://doi.org/10.1016/j.ijcha.2020.100595
Pietsch J, Bauer J, Egli M, Infanger M, Wise P, Ulbrich C, & Grimm D (2011) The effects of weightlessness on the human organism and mammalian cells. Current Molecular Medicine11(5). https://doi.org/10.2174/156652411795976600
Poon C (2020) Factors implicating the validity and interpretation of mechanobiology studies in simulated microgravity environments. Engineering Reports2(10). https://doi.org/10.1002/eng2.12242
Prisby RD, Behnke BJ, Allen MR, & Delp MD (2015) Effects of skeletal unloading on the vasomotor properties of the rat femur principal nutrient artery. Journal of Applied Physiology118(8). https://doi.org/10.1152/japplphysiol.00576.2014
Rabineau J, Issertine M, Hoffmann F, Gerlach D, Caiani EG, Haut B, van de Borne P, Tank J, & Migeotte PF (2022) Cardiovascular deconditioning and impact of artificial gravity during 60-day head-down bed rest—Insights from 4D flow cardiac MRI. Frontiers in Physiology13.https://doi.org/10.3389/fphys.2022.944587
Ramaswamy V, Goins A, & Allen JB (2016) Altered functions of human blood-derived vascular endothelial cells by simulated microgravity. Gravitational and Space Research4(1). https://doi.org/10.2478/gsr-2016-0001
Ren Z, Harriot AD, Mair DB, Chung MK, Lee PHU, & Kim DH (2023) Biomanufacturing of 3D tissue constructs in microgravity and their applications in human pathophysiological studies. Advanced Healthcare Materials12(23). https://doi.org/10.1002/adhm.202300157
Scott JM, Stoudemire J, Dolan L, & Downs M (2022) Leveraging spaceflight to advance cardiovascular research on Earth. Circulation Research130(6). https://doi.org/10.1161/CIRCRESAHA.121.319843
Scotti MM, Wilson BK, Bubenik JL, Yu F, Swanson MS, & Allen JB (2024) Spaceflight effects on human vascular smooth muscle cell phenotype and function. npj Microgravity10(41). https://doi.org/10.1038/s41526-024-00380-w
Shi ZD, & Tarbell JM (2011) Fluid flow mechanotransduction in vascular smooth muscle cells and fibroblasts. Annals of Biomedical Engineering39(6). https://doi.org/10.1007/s10439-011-0309-2
Soloviev AI, & Kizub IV (2019) Mechanisms of vascular dysfunction evoked by ionizing radiation and possible targets for its pharmacological correction. Biochemical Pharmacology179. https://doi.org/10.1016/j.bcp.2018.11.019
Soloviev AI, Tishkin SM, Zelensky SN, Ivanova IV, Kizub IV, Pavlova AA, & Moreland RS (2005) Ionizing radiation alters myofilament calcium sensitivity in vascular smooth muscle: Potential role of protein kinase C. American Journal of Physiology - Regulatory Integrative and Comparative Physiology289(3): 58. https://doi.org/10.1152/ajpregu.00748.2004
Soucy KG, Lim HK, Kim JH, Oh Y, Attarzadeh DO, Sevinc B, Kuo MM, Shoukas AA, Vazquez ME, & Berkowitz DE (2011) HZE 56Fe-ion irradiation induces endothelial dysfunction in rat aorta: Role of xanthine oxidase. Radiation Research176(4). https://doi.org/10.1667/RR2598.1
Su YT, Cheng YP, Zhang X, Xie XP, Chang YM, & Bao J X (2020) Acid sphingomyelinase/ceramide mediates structural remodeling of cerebral artery and small mesenteric artery in simulated weightless rats. Life Sciences243. https://doi.org/10.1016/j.lfs.2019.117253
Sun Y, Kuang Y, & Zuo Z (2021) The emerging role of macrophages in immune system dysfunction under real and simulated microgravity conditions. International Journal of Molecular Sciences22(5). https://doi.org/10.3390/ijms22052333
Tarasova OS, Kalenchuk VU, Borovik AS, Golubinskaya VO, Delp MD, & Vinogradova OL (2020) Simulated microgravity induces regionally distinct neurovascular and structural remodeling of skeletal muscle and cutaneous arteries in the rat. Frontiers in Physiology11. https://doi.org/10.3389/fphys.2020.00675
Tanaka K, Nishimura N, & Kawai Y (2017) Adaptation to microgravity, deconditioning, and countermeasures. Journal of Physiological Sciences67(2). https://doi.org/10.1007/s12576-016-0514-8
Vernice NA, Meydan C, Afshinnekoo E, & Mason CE (2020) Long-term spaceflight and the cardiovascular system. Precision Clinical Medicine3(4). https://doi.org/10.1093/PCMEDI/PBAA022
Williams JP (2023) Evaluation of models used to assess effects and countermeasures of microgravity, with specific respect to their utility in simulating and/or predicting space-related outcomes. NASA STI Repository. NASA/CR–20220018919
Wuest SL, Richard S, Kopp S, Grimm D, & Egli M. (2015) Simulated microgravity: Critical review on the use of random positioning machines for mammalian cell culture. BioMed Research International2015.https://doi.org/10.1155/2015/971474
Xue JH, Chen LH, Zhao HZ, Pu YD, Feng HZ, Ma YG, Ma J, Chang YM, Zhang ZM, & Xie MJ (2011) Differential regulation and recovery of intracellular Ca2+ in cerebral and small mesenteric arterial smooth muscle cells of simulated microgravity rat. PLoS ONE6(5). https://doi.org/10.1371/journal.pone.0019775
Xue JH, Zhang LF, Jin M, & Xie MJ (2007) Differential regulation of L-type Ca2+ channels in cerebral and mesenteric arteries after simulated microgravity in rats and its intervention by standing. American Journal of Physiology - Heart and Circulatory Physiology293(1). https://doi.org/10.1152/ajpheart.01229.2006
Yatagai F, Honma M, Dohmae N, & Ishioka N (2019) Biological effects of space environmental factors: A possible interaction between space radiation and microgravity. Life Sciences in Space Research20. https://doi.org/10.1016/j.lssr.2018.10.004
Zhang B, Chen L, Bai YG, Song JB, Cheng JH, Ma HZ, Ma J, & Xie MJ (2020) miR-137 and its target T-type CaV3.1 channel modulate dedifferentiation and proliferation of cerebrovascular smooth muscle cells in simulated microgravity rats by regulating calcineurin/NFAT pathway. Cell Proliferation53(3). https://doi.org/10.1111/cpr.12774
Zhang R, Bai YG, Lin LJ, Bao JX, Zhang YY, Tang H, Cheng JH, Jia GL, Ren XL, & Jin M (2009) Blockade of at 1 receptor partially restores vasoreactivity, NOS expression, and superoxide levels in cerebral and carotid arteries of hindlimb unweighting rats. Journal of Applied Physiology106(1). https://doi.org/10.1152/japplphysiol.01278.2007
Zhang R, Jiang M, Zhang J, Qiu Y, Li D, Li S, Liu J, Liu C, Fang Z, & Cao F (2020) Regulation of the cerebrovascular smooth muscle cell phenotype by mitochondrial oxidative injury and endoplasmic reticulum stress in simulated microgravity rats via the PERK-eIF2α-ATF4-CHOP pathway. Biochimica et Biophysica Acta - Molecular Basis of Disease1866(8). https://doi.org/10.1016/j.bbadis.2020.165799
Zhang Y, Lau P, Pansky A, Kassack M, Hemmersbach R, & Tobiasch E (2014) The influence of simulated microgravity on purinergic signaling is different between individual culture and endothelial and smooth muscle cell coculture. BioMed Research International2014. https://doi.org/10.1155/2014/413708