Have a personal or library account? Click to login
Reviewing Plasma Seed Treatments for Advancing Agriculture Applications on Earth and Into the Final Frontier Cover

Reviewing Plasma Seed Treatments for Advancing Agriculture Applications on Earth and Into the Final Frontier

Open Access
|Dec 2021

Figures & Tables

Figure 1

Process involved in plasma seed treatment, along with performance and surface sanitization benefits that are implied by data from literature review.
Process involved in plasma seed treatment, along with performance and surface sanitization benefits that are implied by data from literature review.

Figure 2

A. RF plasma experimental set-up: Alternator (1), vacuum chamber (2), electrodes (3, 3′), quartz window of discharge chamber (4), inductor (5,5′), voltage meter (6), tuning capacitor (7), Rogowski coil (8), lens (9), monochromator (10). (Filatova et al., n.d.); B. RF plasma system for treating lentil and pepper seeds.(Shapira, Chaniel, and Bormashenko 2018); C. Low plasma and vibrating stirring device with seeds. (Ono et al. 2017); D. Non-thermal plasma to sterilize rice seeds (Khamsen et al., n.d.); E. Micro DBD plasma for sanitizing spinach seeds. (Ji et al. 2016); F. Plasma system cross section view and equipment on shaker (de Groot et al. 2018); G. Schematic diagram of discharge plasma reaction system.(Guo et al. 2018).
A. RF plasma experimental set-up: Alternator (1), vacuum chamber (2), electrodes (3, 3′), quartz window of discharge chamber (4), inductor (5,5′), voltage meter (6), tuning capacitor (7), Rogowski coil (8), lens (9), monochromator (10). (Filatova et al., n.d.); B. RF plasma system for treating lentil and pepper seeds.(Shapira, Chaniel, and Bormashenko 2018); C. Low plasma and vibrating stirring device with seeds. (Ono et al. 2017); D. Non-thermal plasma to sterilize rice seeds (Khamsen et al., n.d.); E. Micro DBD plasma for sanitizing spinach seeds. (Ji et al. 2016); F. Plasma system cross section view and equipment on shaker (de Groot et al. 2018); G. Schematic diagram of discharge plasma reaction system.(Guo et al. 2018).

Figure 3

A. Picture of wheat seeds between two electrodes showing UV irradiation. (Guo et al. 2018); B. Needle-plate set-up on cotton seeds (Wang et al. 2017); C. Plasma and UV light for sterilizing fruits and seeds (Hayashi et al. 2014); D. Plasma irradiation on radish seeds via DBD plasma (Kitazaki et al. 2014); E. Germicidal treatment system (Takemura et al. 2014); F. Plasma experimental setup (Matra 2016); G. Schematic diagram for DCSBD plasma treatment of maize (Zahoranová et al. 2018); H. DCSBD plasma tool sterilizing black peppercorn sample.(Mošovská et al. 2018); I. Surface discharge plasma made of 13 copper wire (Dobrin et al. 2015).
A. Picture of wheat seeds between two electrodes showing UV irradiation. (Guo et al. 2018); B. Needle-plate set-up on cotton seeds (Wang et al. 2017); C. Plasma and UV light for sterilizing fruits and seeds (Hayashi et al. 2014); D. Plasma irradiation on radish seeds via DBD plasma (Kitazaki et al. 2014); E. Germicidal treatment system (Takemura et al. 2014); F. Plasma experimental setup (Matra 2016); G. Schematic diagram for DCSBD plasma treatment of maize (Zahoranová et al. 2018); H. DCSBD plasma tool sterilizing black peppercorn sample.(Mošovská et al. 2018); I. Surface discharge plasma made of 13 copper wire (Dobrin et al. 2015).

Potential reactions in the plasma discharge region_

Eq. #EquationReference
(1)e + H2O → e + OH* + H(Takemura et al., 2014)
(2)e + CO2 → CO + O + e
(3)e + O2 → O(1D) + O (3P) + e
(4)O(1D) + H2O → OH* + OH*
(1)e + O2 → 2O + e(Kitazaki et al., 2014)
(2)O + O2 + M → O3 + M, k = 3.4 × 10−34cm6/s
(3)e + N2 → e + 2N
(4)N + O2 → NO + O, k = 7.7 × 10−17cm3/s
(5)N+ O3 → NO + O2, k = 3.7 × 10−13cm3/s
(6)O + NO2 → NO + O2, k = 9.7 × 10−12cm3/s
(7)NO + O3 → NO2 + O2, k = 2.1 × 10−14cm3/s
(8)H2O + e → OH + H + e
(9)H + O2 + M → HO2 + M, k = 1.8 × 10−32cm3/s
(10)NO + HO2 → NO2 + OH, k = 7.8 × 10−12cm3/s

Experimental parameters of plasma agriculture experiments_

ReferenceSeedCarrier gasExperimental parameterPlasmaPrimary focus of investigation

TypeAmountTypeFlow ratePressureSeed holder material typeTreatment timeTypePowerIndication of success (±/0)
(Filatova et al., 2013)Spring wheat (Triticum aestivum L.), blue lupine (Lupinus angustifolius), and maize (Zea mays L.)(1) 50(2) 60AirN/A(1) 0.5 Torr(2) 0.3–0.5 TorrPetri dish(1) 2.5 min, 5 min, 8 min, 10 min(2) 1 min, 5 min, 7 min, 10 min, 20 minRF(1) 5.28 MHz; 0.2–0.6 W/cm2(2) 13.56 MHz; 50 W, 100 W, and 200 WGermination (+); Seedling health (±) treatment dependent; microorganisms (±) treatment dependent
(Shapira et al., 2018)Lentil (Lens culinaris), pepper (Capsicum annuum)2 (1 pair)AirN/A0.5 TorrSilk wires inside a capacitor60 sRFFrequency: 13.56 MHz; RF discharge: 18 W; voltage: 6 kVSurface charge density and kinetics (+); wettability: (+)
(Filatova et al., 2009)Grain crops (rye, wheat, barley), legumes (peas and narrow-leaved lupin), and aster100AirN/A0.3–0.7 TorrTwo parallel round Cu electrodes7 min, 15 min, and 30 minRF5.28 MHz; RF discharge: 5.28 MHz; power: 0.9 W/cm3Germination (+); pathogenic microbes (+) (Escherichia coli ATCC 8739, Staphylococcus aureus ATCC 6538, Bacillus subtilis ATCC 6633)
(Ling et al., 2015)Soybean (Glycine max (L.) Merr)N/AHeN/A1.1 TorrPolar plates15 sRF0 W, 60 W, 80 W, 100 W, and 120 WGermination (+); growth (+); water uptake (+); soluble sugar and protein content (+)
(Li et al., 2016)PeanutN/AHeN/A1.1 TorrConveyer belt15 sRF60–140 W; 13.56 MHzGermination (+); yield (+); growth (+)
(Ono et al., 2017)Cabbage1,000(1) Air, (2) O2N/A0.45 TorrPlastic pot0–3 hRF13.56 MHz, 100 WInactivation of bacteria on plant seed (+)
(Shapira et al., 2017)Pepper, lentilN/AN/AN/A0.5 TorrN/A60 sRF13.56 MHz, 18 WSeed surface charging (0)
(Selcuk et al., 2008)Wheat, barley, oats, lentil1–8 gAir and SF6N/A500 mTorrQuartz tube30 s to 30 minLow pressure cold plasma1 kHz, 300 W, 20 kVMicrobial reduction (+);germination (+)
(Ahn et al., 2019)Yellow dent corn hybrid(1) 1,500(2) 120; 1,512 total(3) N/A(4) 1,500(1) N2(2) He + N2(3) He(4) He + air(1) N/A(2) 15 + 3 LPM(3) 10 LPM(4) 10 + 5 LPM(1) 100 mTorr, 10−6 Torr(2) Atm.(3) Atm. (4) Atm.(1) Mesh plate(2) Al mesh plate(3) Plate(4) Al mesh plate(1) 2 min., 10 min(2) 3 s(3) 10 s(4) 10 min(1) RF(2) MW(3) DBD(4) MW(1) 800 W, 13.56 MHz(2) 500 W(3) 15 kV; 35 kHz(4) 800 WSeed growth (0); germination (0); yield (0)
(Sinegovskaya et al., 2019)SoybeanN/A(1) Air(2) Ar + airN/AAtm.N/AN/A(1) DBD(2) MW jet(1) 28–32 kHz, 6–12 kV, AC(2) 2.45 GHzGermination (±) treatment dependent
(Ji et al., 2016)Spinach (Spinacia oleracea (L.))(1) 50(2) 25(1) Air + N2(2) N/A(1) 1.5 LPM(2) N/AAtm.(1) Petri dish(2) Wire gauze30 s, 1 min, 3 min(1) DBD(2) PulsedN/AGermination (±); growth (±); treatment dependent
(Gómez-Ramírez et al., 2017)QuinoaN/AAir(1) N/A(2) 0.005 LPM(1) 375 Torr(2) 0.08 Torr(1) Quartz plate(2) N/A10 s, 30 s, 60 s, 180 s, 900 s(1) DBD(2) RF(1) 6.4 W(2) 15 W, 13.56 MHzGermination (±); treatment dependent; surface chemistry (+)
(de Groot et al., 2018)Cotton350(1) Air(2) Ar1 LPMAtm.Borosilicate glass cylinder(1) 0 min, 3 min, 27 min (2) 81 minDBDN/AGermination (+); water uptake (+)
(Guo et al., 2018)Wheat50Air1.5 LPMAtm.Wire netting in a plexiglass cylinder4 minDBDDischarge voltage: 0.0 kV, 9 kV, 11 kV, 13 kV, 15 kV, and 17 kV, 50 HzVitality (+); growth (+); water uptake (+)
(Kitazaki et al., 2014)Radish sprouts10 per lineAirN/AAtm.Glass plate180 sDBD10 kHz AC. P2P discharge voltage and current 9.2 kV/0.2 A. Discharge power: 1.49 W/cm2Growth (+); NO x and O3 emissions (0)
(Wang et al., 2017)Cotton120 gAir N21 SLPMAtm.Needle-plate structure3 min, 9 min, 27 minDBD19 kV, 1 kHz ACSeed spectral characteristics (0); water uptake (+)
(Khamsen et al., n.d.)Rice25Air, air + ArN/AAtm.Glass plate15 s, 30 s, 45 s, 1 min, 2 minDBDN/ASterilization(+); germination (+); water uptake (+)
(da Silva et al., 2017)Mimosa caesalpiniafolia Benth100N/AN/AAtm.Glass tubes, metal mesh screen3 min, 9 min, 15 minDBD17.5 kV, 990 HzSeed wettability (+); imbibition (+); germination (+)
(Hayashi et al., 2014)RiceN/AAirN/AAtm.Dish (unknown material)20 minDBD10 kHzSurface sterilization of seed and fruit surfaces (+)
(Dobrin et al., 2015)Wheat105N/AN/AAtm.Glass plate5 min, 15 min, 30 minDBD2.7 W, 15 kV, 50 HzGermination (+); water absorption (+); root length (+)
(Pérez-Pizá et al., 2019)Soybean (Glycine max (L.) Merrill)500(1) O2(2) N26 NL min−1Atm.N/A60–180 sDBD50 Hz,0–25 kV, ACPathogenic reduction (+); plant growth (+)
(Butscher et al., 2016)Sprout seeds: onion (Alliumcepa), radish (Raphanus sativus), cress (Lepidiumsativum), alfalfa (Medicago sativa)10 gAr5.6 NL min−1Atm.PC500 nsDBD2.5–10 kHz, 6–10 kVGermination (+); microbial inactivation (+) (Salmonella and E. coli)
(Nishioka et al., 2016)Brassicaceous (Brassica campestris var. amplexicaulis)20Ar0.5–1 LPM10.7–16.0 kPaMesh sheet, unknown material0 min, 5 min, 10 min, 20 min, 40 minDBDAC, 10 kHz, 2.5–5.5 kVDisinfection and DNA of pathogen (+) (Xanthomonas campestris pv. Campestris)
(Jo et al., 2014)Rice (Oryza sativa L.)3–5AirN/AAtm.Aluminum holder0 min, 0.5 min, 1 min, 2 min, 3 minDBD30 kV, 22 kHz, 3 W dishcargeFungal pathogen reduction (+) (Gibberella fujikuroi and cnoidia)
(Mitra et al., 2014)Chickpea (Cicer arietinum)NAAirN/AAtm.Polyoxymethylene–copolymer0.5–5 minDBD17 kVpp, 5 kVpp, 0 kVppGermination (+); microbial reduction (+)
(Feizollahi et al., 2020)Barley grain11–12AirN/AAtm.Plastic cup0 min, 2 min, 4 min, 6 min, 8 min, 10 minDBD0–34 kV; 3,500 Hz; duty cycle 70%; 1 Amp; 300 WMicrobial reduction of DON (+); germination (+)
(Kordas et al., 2015)Winter wheat grain200AirN/AAtm.Packed bed3 s, 10 s, 30 sPBDBD100 Hz, 83 kHz, 8 kV (AC)Fungus colonization reduction (+)
(Anna Zahoranová et al., 2018)Maize (Zea mays L; cv. Ronaldinio)200–250AirN/AAtm.Ceramic plate30–300 sDCSBD14 kHz, up to 20 kV, 400 W, ACInhibition of surface microorganisms (+); seedling growth (+/0) treatment dependent
(A. Zahoranová et al., 2016)Wheat (Triticum aestivum L. cv. Eva)100–300AirN/AAtm.Ceramic plate30–300 sDCSBD14 kHz, up to 20 kV, 400 W, ACInhibition of surface microorganisms (+); germination (+); water uptake (+)
(Štěpánová et al., 2018)Cucumber (Cucumis sativus L.), Pepper (Capsicum annuum L.)100AirN/AAtm.Ceramic20–50 s 4–12 sDCSBD400 W, 20 kV, 15 kHz ACGermination (+); Pathogenic microbes (+) (Didymella licopersici spores)
(Waskow et al., 2018)Lentil1 gAirN/AAtm.Alumina ceramic plate0–10 minDCSBD400 WGermination (+); microbial inactivation (+) (several strains of bacteria and fungi)
(Mošovská et al., 2018)Black peppercorn5 gAirN/AAtm.Ceramic plate60 s, 120 s, 180 s, 240 s, and 300 sDCSBD400 W DC, 18 kHz, 10 kVPathogenic bacteria inhibition (+)
(Puligundla et al., 2017)Radish3 gAir2.5 m/sAtm.Petri dish0–3 minPlasma jet20 kV DC, 1.5 A, 58 kHzGermination (±); treatment dependent; decontamination (+)
(Matra, 2016)Radish10Ar4 LPMAtm.Acrylic box2 min, 4 min, 6 minPlasma jet(1) 90 W (21.2 kV) (2) 140 W (30 kV)Germination (+)
(Takemura et al., 2014)Black pepper1 g(1) Ar(2) Ar + CO2(3) Air(4) Ar + H2O(1) 20 LPM(2) 0.5 LPM, 20 LPM(3) 20 LPM(4) 20 LPMAtm.Petri dish5 minPlasma jetPulse – 280 V, 8 A, 16–20 kHzSterilization (±) treatment dependent
(Kim et al., 2017)Broccoli (Brassica oleracea var. kialica plen.)1 gN/AN/AN/APetri plate0–3 minPlasma jet220 V AC, 20 kV DC, 58 kHzMicrobial reduction (+); germination (+)
(Bafoil et al., 2018)Arabidopsis Thaliana150–300 seeds(1) Air(2)He (2b)He(1) N/A(2) 3 L/min(1) Atm(1) Glass plate(2) Eppendorf tube(2b) Glass beaker(2) 15 min(1) DBD(2) Plasma jet(2b) Plasma jet/DBD(1) HV(2) 10 kV, 9.7 kHz,Germination (+); growth (+)
Language: English
Page range: 133 - 158
Published on: Dec 24, 2021
Published by: American Society for Gravitational and Space Research
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2021 Annie Meier, Deborah Essumang, Mary Hummerick, Christina Johnson, Mirielle Kruger, Gioia Massa, Kenneth Engeling, published by American Society for Gravitational and Space Research
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.