Have a personal or library account? Click to login
Compact Heat Rejection System Utilizing Integral Variable Conductance Planar Heat Pipe Radiator for Space Application Cover

Compact Heat Rejection System Utilizing Integral Variable Conductance Planar Heat Pipe Radiator for Space Application

Open Access
|Dec 2015

Figures & Tables

Figure 1.

Schematic of compact heat rejection with variable conductance planar heat pipe (VCPHP) radiator.
Schematic of compact heat rejection with variable conductance planar heat pipe (VCPHP) radiator.

Figure 2.

Steady-state planar heat pipe operation calculation flow chart.
Steady-state planar heat pipe operation calculation flow chart.

Figure 3.

(A) Brass planar heat pipe. (B) Liquid Crystal Polymer heat pipe (LCP-HP).
(A) Brass planar heat pipe. (B) Liquid Crystal Polymer heat pipe (LCP-HP).

Figure 4.

Predicted vapor and liquid pressure drops of BHP and PHP during operation.
Predicted vapor and liquid pressure drops of BHP and PHP during operation.

Figure 5.

BHP temperature distributions with different heat inputs.
BHP temperature distributions with different heat inputs.

Figure 6.

Temperature distribution of BHP dry-run test.
Temperature distribution of BHP dry-run test.

Figure 7.

Temperature distribution of LCP-HP.
Temperature distribution of LCP-HP.

Figure 8.

Wall temperature distributions of VCPHP under different sink temperature fields (Q=200 W).
Wall temperature distributions of VCPHP under different sink temperature fields (Q=200 W).

Figure 9.

Wall temperature distributions of VCPHP with different heat loads (Tamb=250 K).
Wall temperature distributions of VCPHP with different heat loads (Tamb=250 K).

Figure 10.

Wall temperature distributions of VCPHP with different heat loads (Tamb=50 K).
Wall temperature distributions of VCPHP with different heat loads (Tamb=50 K).

UT2

Greek letters
βLiquid void fraction
δLiquid layer thickness
εEmissivity
ρDensity
σSurface tension (for ethanol: 22.8x10-3 N/m @T=20°C)
σrStefan-Boltzmann constant
νKinematic viscosity
μDynamic viscosity

UT1

AArea
AcDispersion constant (for ethanol: 2.2x10-21 J)
cAccommodation coefficient
DhHydraulic diameter
fFin thickness
fRePoiseuille number
hHeat transfer coefficient
hfgLatent heat of vaporization
kThermal conductivity
LLength
mjMass flux rate through liquid-vapor interface
MMolecular weight
NNumber of the channels
PPressure
QHeat load
qHeat flux
RGas constant
ReffEffective thermal resistance
rcRadius of meniscus
TTemperature
TRTurn-down ratio
uVelocity in x-direction
UWind speed
VVolume
WWidth
wHalf width of the channel
wrHalf meniscus surface area per unit length

UT3

Subscripts and superscripts
ambAmbient
bGroove base
cCondenser
eEvaporator
gNon-condensable gas
iInactive region
inInput
lLiquid phase region
lvLiquid-vapor interface
maxMaximum
minMinimum
outOutput
rReservoir
sSolid wall
surfaceSurface
tTotal
vVapor phase region
wWick structure
0Reference value

Specifications of the two planar heat pipes_

Brass Heat Pipe (BHP)Liquid Crystal Polymer Heat Pipe (LCP-HP)
Length (cm)27.945.08
Width (cm)13.975.08
Thick (cm)1.270.8334
Wall thickness (mm)3.1753.175
Grooves typeTriangularRectangular
Grooves dimensions
72 grooves per plate32 grooves per plate

Properties of brass and CoolPoly® E2 Liquid Crystal Polymer_

BrassLiquid Crystal Polymer
Density (g/cm3)8.71.6
Thermal conductivity10920
(W/mK)
Tensile Modulus (Gpa) 100-125   24.3
Tensile Strength (Mpa)20080
Flexural Modulus (Gpa)39   32.3
Flexural Strength (Mpa)235 139
Language: English
Page range: 30 - 41
Published on: Dec 1, 2015
Published by: American Society for Gravitational and Space Research
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2015 Kuan-Lin Lee, Yeyuan Li, Brian J. Guzek, Jaikrishnan R. Kadambi, Yasuhiro Kamotani, published by American Society for Gravitational and Space Research
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.