Have a personal or library account? Click to login
Exponential Bernstein-Durrmeyer operators Cover

Exponential Bernstein-Durrmeyer operators

Open Access
|May 2025

References

  1. T. Acar, A. Aral, D. Cardenas-Moraleş P. Garrancho, Szász-Mirakyan type operators which fix exponentialş Results Math., vol. 72, no. 3, 2017, 1341-1358.
  2. T. Acar, A. Aral, H. Gonska, On Szász-Mirakyan operators preserving e2ax, a > 0, Mediterr. J. Math., vol. 14, no. 6, 2017.
  3. A. M. Acu, A. Aral, I. Raşa, New properties of operators preserving exponentialş Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., vol. 117, no. 1, 2023.
  4. L. Angeloni, D. Costarelli, Approximation by exponential - type polynomialş J. Math. Anal. Appl., vol. 532, no. 1, 2024.
  5. A. Aral, D. Cardenas-Moraleş P. Garrancho, Bernstein-type operators that reproduce exponential functionş J. Math. Inequal., vol. 12, no. 3, 2018, 861-872.
  6. A. Aral, D. Otrocol, I. Raşa, On approximation by some Bernstein-Kantorovich exponential-type polynomial, Period. Math. Hung., vol. 79, 2019, 236-254.
  7. E. Berdysheva, K. Jetter, J. Stöckier, Durrmeyer operators and their natural quasi-interpolantş Stud. Comput. Math., vol. 12, 2006, 1-21.
  8. H. Berenş T. Xu, On Bernstein-Durrmeyer polynomials with Jacobi weightş In Approximation Theory and Functional Analysis (C. K. Chui ed.), 25-43, 1991.
  9. M.-M. Derriennic, Sur l’approximation de functions integrable sur [0; 1] par des polynomes de Bernstein modifieş J. Approx. Theory, vol. 31, 1981, 323-343.
  10. M. M. Derriennic, On multivariate approximation by Bernstein-type polynomialş J. Approx. Theory, vol. 45, no. 2, 1985, 155-166.
  11. J. L. Durrmeyer, Une formule d’inversion de la Transformee de Laplace, Applications a la Theorie des Momentş These de 3e Cycle, Faculte des Sciences de l’Universite de Pariş 1967.
  12. V. Gupta, Approximation with certain exponential operatorş Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., vol. 114, no. 2, 2022, 51.
  13. H. Johnen, Inequalities connected with the moduli of smootnesş Mat. Vesn., N. Ser., vol. 9, no. 24, 1972, 289-303.
  14. A. Lupaş Die Folge der Betaoperatoren. Dissertation, Universit¨at Stuttgart, 1972.
  15. B. Mond, Note on the degree of approximation by linear positive operatorş J. Approx. Theory, vol. 18, 1976, 304-306.
  16. R. Păltănea, Sur un opérateur polynomial défini sur l’ensemble des fonctions intégrableş Babeş Bolyai Univ., Fac. Math., Res. Semin., vol. 2, 1983, 101-106.
  17. R. Păltănea, Optimal estimates with moduli of continuity, Result. Math., vol. 32, 1997, 318-331.
DOI: https://doi.org/10.2478/gm-2024-0015 | Journal eISSN: 1584-3289 | Journal ISSN: 1221-5023
Language: English
Page range: 84 - 97
Submitted on: Dec 3, 2024
Accepted on: Dec 31, 2024
Published on: May 15, 2025
Published by: Lucian Blaga University of Sibiu
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2025 Ștefan-Lucian Garoiu, published by Lucian Blaga University of Sibiu
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.