Have a personal or library account? Click to login
More accurate estimates for the Wallis’ ratio Cover

More accurate estimates for the Wallis’ ratio

Open Access
|May 2025

References

  1. M. Abramowitz, I. A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables, New York: Dover Publications, 1972.
  2. H. Alzer, On some inequalities for the gamma and psi functions, Math. Comput., vol. 66, no. 217, 1997, 373-389.
  3. A. V. Boyd, Note on a paper by Uppuluri, Pacific J. Math., vol. 22, 1967, 9-10.
  4. C. P. Chen, F. Qi, The best bounds in Wallis’ inequality, Proceedings of the Mathematical Society, vol. 133, no. 2, 2004, 397-401.
  5. C. P. Chen, F. Qi, Improvement of lower bound in Wallis’ inequality, Research Group in Mathematical Inequalities and Applications, 2002. http://rgmia.org/papers/v5e/wallis2.pdf
  6. C.-P. Chen, L. Lin, Remarks on asymptotic expansions for the gamma function, Appl. Math. Lett., vol. 25, 2012, 2322-2326.
  7. C.-P. Chen, L. Lin, Asymptotic expansions for the ratio of gamma functions, Carpathian J. Math, vol. 30, no. 2, 2014, 139-146.
  8. C.-P. Chen, R. B. Paris, Inequalities, asymptotic expansions and completely monotonic functions related to the gamma function, Appl. Math. Comput., vol. 250, 2015, 514-529.
  9. C.-P. Chen, Asymptotic expansions of the gamma function associated with the Windschitl and Smith formulas, Research Group in Mathematical Inequalities and Applications, vol. 17, 2014, Art. 109. http://rgmia.org/papers/v17/v17a109.pdf
  10. J. T. Chu, A modified Wallis product and some application, Amer. Math. Monthly, vol. 69, 1962, 402-404.
  11. V. G. Cristea, A direct approach for proving Wallis ratio estimates and an improvement of Zhang-Xu-Situ inequality, Stud. Univ. Babeş-Bolyai Math., vol. 60, no. 2, 2015, 201-209.
  12. V. G. Cristea, A new improvement of Zhang-Xu-Situ inequality about the Wallis ratio estimates, Asian J. Math. Comput. Res., ISSN 2395-4213, vol. 3, no. 2, 2015, 75-86.
  13. S. Dumitrescu, Estimates for the ratio of gamma functions by using higher order roots, Stud. Univ. Babeş-Bolyai Math., vol. 60, no. 2, 2015, 173-181.
  14. N. Elenović, L. Lin, L. Vukšić, Inequalities and asymptotic expansions of the Wallis sequence and the sum of the Wallis ratio, J. Inequal. Math., vol. 7, no. 4, 2013, 679-695.
  15. W. Gautschi, Some elementary inequalities relating to the gamma and incomplete gamma function, J. Math. Phys., vol. 38, 1959, 77-81.
  16. S. Guo, J.-G. Xu, F. Qi, Some exact constants for the approximation of the quantity in the Wallis’ formula, J. Inequal. Appl., vol. 67, 2013.
  17. M. D. Hirschhorn, Comments on the paper “Wallis’ sequence...” by Lampret, Aust. Math. Soc. Gaz., vol. 32, 2005, 104.
  18. D. K. Kazarinoff, On Wallis’ formula, Edinburgh. Math. Notes, vol. 40, 1956, 19-21.
  19. D. Kershaw, Some extentions of W. Gautschi’s inequalities for the gamma function, Math. Comp., vol. 41, 1983, 607-611.
  20. V. Lampret, Wallis sequence estimated through the Euler-MacLaurin formula: even from the Wallis product π could be computed fairly accurately, Aust. Math. Soc. Gaz., vol. 31, 2004, 328-339.
  21. L. Lorch, Inequalities for Ultraspherical Polynomials and Gamma Function, J. Approx. Theory, vol. 40, 1984, 115-120.
  22. L. Lin, J.-E. Deng, C.-P. Chen, Inequalities and asymptotic expansions associated with the Wallis sequence, J. Inequal. Appl., 2014, 251. http://www.journalofinequalitiesandapplications.com/content/pdf/1029-242X-2014-251.pdf
  23. M. Mahmoud, A. Talat, H. Moustafa, R. P. Agarwal, Completely monotonic functions involving Bateman’s G-function, J. Comput. Anal. Appl., vol. 29, no. 5, 2021, 970-986.
  24. C. Mortici, Product approximation via asymptotic integration, Amer. Math. Monthly, vol. 117, no. 5, 2010, 434-441.
  25. C. Mortici, Sharp inequalities and complete monotonicity for the Wallis ratio, Bull. Belg. Math. Soc. Simon Stevin, vol. 17, 2010, 929-936.
  26. C. Mortici, On some accurate estimates of π, Bull. Math. Anal. Appl., vol. 2, 2010, 137-139.
  27. C. Mortici, A new method for establishing and proving new bounds for the Wallis ratio, Math. Inequal. Appl., vol. 13, 2010, 803-815.
  28. C. Mortici, New approximation formulas for evaluating the ratio of gamma functins, Math. Comput. Modelling, vol. 52, 2010, 425-433.
  29. C. Mortici, Completely monotone functions and the Wallis ratio, Appl. Math. Lett., vol. 25, no. 4, 2012, 717-722.
  30. C. Mortici, Estimating π from the Wallis sequence, Math. Commun., vol. 17, 2012, 489-495.
  31. C. Mortici, V. G. Cristea, Estimates for Wallis’ ratio via complete monotonicity arguments, Indian J. Pure Appl. Math., vol. 47, no. 3, 2016, 437-447.
  32. C. Mortici, New improvements of the Stirling formula, Appl. Math. Comput., vol. 217, no. 2, 2010, 699-704.
  33. L. Panaitopol, O rafinare a formulei lui Stirling, Gaz. Mat., 90, 1985, 329-332.
  34. E. Păltănea, On the rate of convergence of Wallis’ sequence, Austral. Math. Soc. Gaz., vol. 34, 2007, 34-38.
  35. F. Qi, C. Mortici, Some best approximation formulas and inequalities for Wallis ratio, arXiv:1312.3782v1, 2013.
  36. D. V. Slavić, On inequalities for Γ(x + 1)/Γ(x + 1/2), Univ. Beograd, Publ. Elektrotehn. Fak. Ser. Mat. Fiz., no. 498-541, 1975, 17-20.
  37. J.-S. Sun, C.-M. Qu, Alternative proof of the best bounds of Wallis’ inequality, Commun. Math. Anal., vol. 2, 2007, 23-27.
  38. X.-M. Zhang, T.-Q. Xu, L.-B. Situ, Geometric convexity of a function involving gamma function and application to inequality theory, J. Inequal. Pure Appl. Math., vol. 8, no. 1, 2007, Art. 17. http://jipam.vu.edu.au/.
  39. D.-J. Zhao, On a two-sided inequality involving Wallis’ formula, Math. Practice Theory, vol. 34, no. 7, 2004, 166-168.
  40. Y. Zhao, Q. Wu, Wallis inequality with a parameter, J. Inequal. Pure Appl. Math., vol. 7, no. 2, 2006, Art. 56. http://jipam.vu.edu.au/
  41. J. Wallis, Computation of π by Succesive Interpolations, Source Book in Mathematics, 1200-1800, Ed. D.J. Struik, Harvard University Press, Cambridge, MA, 1969, 224-253.
  42. G. N. Watson, A note on gamma functions, Edinburgh Math. Notes, no. 41, 1959, 7-9.
  43. D. V. Widder, An Introduction to Transform Theory, Academic Press, New York, 1971.
DOI: https://doi.org/10.2478/gm-2024-0010 | Journal eISSN: 1584-3289 | Journal ISSN: 1221-5023
Language: English
Page range: 25 - 43
Submitted on: Sep 25, 2024
Accepted on: Dec 17, 2024
Published on: May 15, 2025
Published by: Lucian Blaga University of Sibiu
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2025 Valentin Gabriel Cristea, published by Lucian Blaga University of Sibiu
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.