References
- M. Abramowitz, I. A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables, New York: Dover Publications, 1972.
- H. Alzer, On some inequalities for the gamma and psi functions, Math. Comput., vol. 66, no. 217, 1997, 373-389.
- A. V. Boyd, Note on a paper by Uppuluri, Pacific J. Math., vol. 22, 1967, 9-10.
- C. P. Chen, F. Qi, The best bounds in Wallis’ inequality, Proceedings of the Mathematical Society, vol. 133, no. 2, 2004, 397-401.
- C. P. Chen, F. Qi, Improvement of lower bound in Wallis’ inequality, Research Group in Mathematical Inequalities and Applications, 2002. http://rgmia.org/papers/v5e/wallis2.pdf
- C.-P. Chen, L. Lin, Remarks on asymptotic expansions for the gamma function, Appl. Math. Lett., vol. 25, 2012, 2322-2326.
- C.-P. Chen, L. Lin, Asymptotic expansions for the ratio of gamma functions, Carpathian J. Math, vol. 30, no. 2, 2014, 139-146.
- C.-P. Chen, R. B. Paris, Inequalities, asymptotic expansions and completely monotonic functions related to the gamma function, Appl. Math. Comput., vol. 250, 2015, 514-529.
- C.-P. Chen, Asymptotic expansions of the gamma function associated with the Windschitl and Smith formulas, Research Group in Mathematical Inequalities and Applications, vol. 17, 2014, Art. 109. http://rgmia.org/papers/v17/v17a109.pdf
- J. T. Chu, A modified Wallis product and some application, Amer. Math. Monthly, vol. 69, 1962, 402-404.
- V. G. Cristea, A direct approach for proving Wallis ratio estimates and an improvement of Zhang-Xu-Situ inequality, Stud. Univ. Babeş-Bolyai Math., vol. 60, no. 2, 2015, 201-209.
- V. G. Cristea, A new improvement of Zhang-Xu-Situ inequality about the Wallis ratio estimates, Asian J. Math. Comput. Res., ISSN 2395-4213, vol. 3, no. 2, 2015, 75-86.
- S. Dumitrescu, Estimates for the ratio of gamma functions by using higher order roots, Stud. Univ. Babeş-Bolyai Math., vol. 60, no. 2, 2015, 173-181.
- N. Elenović, L. Lin, L. Vukšić, Inequalities and asymptotic expansions of the Wallis sequence and the sum of the Wallis ratio, J. Inequal. Math., vol. 7, no. 4, 2013, 679-695.
- W. Gautschi, Some elementary inequalities relating to the gamma and incomplete gamma function, J. Math. Phys., vol. 38, 1959, 77-81.
- S. Guo, J.-G. Xu, F. Qi, Some exact constants for the approximation of the quantity in the Wallis’ formula, J. Inequal. Appl., vol. 67, 2013.
- M. D. Hirschhorn, Comments on the paper “Wallis’ sequence...” by Lampret, Aust. Math. Soc. Gaz., vol. 32, 2005, 104.
- D. K. Kazarinoff, On Wallis’ formula, Edinburgh. Math. Notes, vol. 40, 1956, 19-21.
- D. Kershaw, Some extentions of W. Gautschi’s inequalities for the gamma function, Math. Comp., vol. 41, 1983, 607-611.
- V. Lampret, Wallis sequence estimated through the Euler-MacLaurin formula: even from the Wallis product π could be computed fairly accurately, Aust. Math. Soc. Gaz., vol. 31, 2004, 328-339.
- L. Lorch, Inequalities for Ultraspherical Polynomials and Gamma Function, J. Approx. Theory, vol. 40, 1984, 115-120.
- L. Lin, J.-E. Deng, C.-P. Chen, Inequalities and asymptotic expansions associated with the Wallis sequence, J. Inequal. Appl., 2014, 251. http://www.journalofinequalitiesandapplications.com/content/pdf/1029-242X-2014-251.pdf
- M. Mahmoud, A. Talat, H. Moustafa, R. P. Agarwal, Completely monotonic functions involving Bateman’s G-function, J. Comput. Anal. Appl., vol. 29, no. 5, 2021, 970-986.
- C. Mortici, Product approximation via asymptotic integration, Amer. Math. Monthly, vol. 117, no. 5, 2010, 434-441.
- C. Mortici, Sharp inequalities and complete monotonicity for the Wallis ratio, Bull. Belg. Math. Soc. Simon Stevin, vol. 17, 2010, 929-936.
- C. Mortici, On some accurate estimates of π, Bull. Math. Anal. Appl., vol. 2, 2010, 137-139.
- C. Mortici, A new method for establishing and proving new bounds for the Wallis ratio, Math. Inequal. Appl., vol. 13, 2010, 803-815.
- C. Mortici, New approximation formulas for evaluating the ratio of gamma functins, Math. Comput. Modelling, vol. 52, 2010, 425-433.
- C. Mortici, Completely monotone functions and the Wallis ratio, Appl. Math. Lett., vol. 25, no. 4, 2012, 717-722.
- C. Mortici, Estimating π from the Wallis sequence, Math. Commun., vol. 17, 2012, 489-495.
- C. Mortici, V. G. Cristea, Estimates for Wallis’ ratio via complete monotonicity arguments, Indian J. Pure Appl. Math., vol. 47, no. 3, 2016, 437-447.
- C. Mortici, New improvements of the Stirling formula, Appl. Math. Comput., vol. 217, no. 2, 2010, 699-704.
- L. Panaitopol, O rafinare a formulei lui Stirling, Gaz. Mat., 90, 1985, 329-332.
- E. Păltănea, On the rate of convergence of Wallis’ sequence, Austral. Math. Soc. Gaz., vol. 34, 2007, 34-38.
- F. Qi, C. Mortici, Some best approximation formulas and inequalities for Wallis ratio, arXiv:1312.3782v1, 2013.
- D. V. Slavić, On inequalities for Γ(x + 1)/Γ(x + 1/2), Univ. Beograd, Publ. Elektrotehn. Fak. Ser. Mat. Fiz., no. 498-541, 1975, 17-20.
- J.-S. Sun, C.-M. Qu, Alternative proof of the best bounds of Wallis’ inequality, Commun. Math. Anal., vol. 2, 2007, 23-27.
- X.-M. Zhang, T.-Q. Xu, L.-B. Situ, Geometric convexity of a function involving gamma function and application to inequality theory, J. Inequal. Pure Appl. Math., vol. 8, no. 1, 2007, Art. 17. http://jipam.vu.edu.au/.
- D.-J. Zhao, On a two-sided inequality involving Wallis’ formula, Math. Practice Theory, vol. 34, no. 7, 2004, 166-168.
- Y. Zhao, Q. Wu, Wallis inequality with a parameter, J. Inequal. Pure Appl. Math., vol. 7, no. 2, 2006, Art. 56. http://jipam.vu.edu.au/
- J. Wallis, Computation of π by Succesive Interpolations, Source Book in Mathematics, 1200-1800, Ed. D.J. Struik, Harvard University Press, Cambridge, MA, 1969, 224-253.
- G. N. Watson, A note on gamma functions, Edinburgh Math. Notes, no. 41, 1959, 7-9.
- D. V. Widder, An Introduction to Transform Theory, Academic Press, New York, 1971.