Have a personal or library account? Click to login
Estimates of the Initial Taylor-Maclaurin Coefficients of a general subclass of Bi-Bazilevič type functions Cover

Estimates of the Initial Taylor-Maclaurin Coefficients of a general subclass of Bi-Bazilevič type functions

Open Access
|May 2025

References

  1. S. Altınkaya, S. Yalçın, On the Chebyshev polynomial coefficient problem of some subclasses of bi-univalent functions, Gulf J. Math., vol. 5, no. 3, 2017, 34-40, https://doi.org/10.56947/gjom.v5i3.105.
  2. S. Altınkaya, S. Yalçın, On the (p,q)-Lucas polynomial coefficient bounds of the bi-univalent function class Σ, Bol. Soc. Mat. Mex., vol. 25, no. 3, 2018, 567-575, https://doi.org/10.1007/s40590-018-0212-z.
  3. C. Abirami, N. Magesh, J. Yamini, Initial bounds for certain classes of biunivalent functions defined by Horadam polynomials, Abstr. Appl. Anal., Art. ID 7391058, 2020, 1-8, https://doi.org/10.1155/2020/7391058.
  4. I. Al-Shbeil, A. Căta¸s, H. M. Srivastava, N. Aloraini, Coefficient estimates of new families of analytic functions associated with q-Hermite polynomials, Axioms, vol. 12, no. 1, 2023, 52, 1-14, https://doi.org/10.3390/axioms12010052.
  5. W. Al-Rawashdeh, A family of analytic functions subordinate to Horadam polynomials, Eur. J. Pure Appl. Math., vol. 17, no. 1, 2024, 158-170, https://doi.org/10.29020/nybg.ejpam.v17i1.5022.
  6. I. E. Bazilevič, On a case of integrability in quadratures of the Loewner-Kufarev equation, Mat. Sb. (N.S.), vol. 37, no. 79, 1955, 471-476.
  7. D. Brannan, J. Clunie, Aspects of contemporary complex analysis, Academic Press, New York, 1980.
  8. M. Darus, D. K. Thomas, κ-logarithmically convex functions, Indian J. Pure Appl. Math., 29, 1998, 1049-1059.
  9. P. L. Duren, Univalent functions, Grundlehren der Mathematischen Wissenschaften, Springer, New York, vol. 259, 1983.
  10. M. Fekete, G. Szegö, Eine Bemerkungüber ungerade schlichte Funktionen, J. London Math. Soc., vol. 1, no. 2, 1933, 85-89, https://doi.org/10.1112/jlms/s1-8.2.85.
  11. S. A. Fitri, M. Muslikh, Beta-Bazilevič function, Sahand Commun. Math. Anal., vol. 21, no. 2, 2024, 179-193, https://doi.org/10.22130/scma.2023.2004270.1351.
  12. S. A. Fitri, D. K. Thomas, Gamma-Bazilevič functions, Mathematics, vol. 8, no. 2, 2020, 175, 1-8, https://doi.org/10.3390/math8020175.
  13. A. F. Horadam, J. M. Mahon, Pell and Pell–Lucas polynomials, Fibonacci Quart., 23, 1985, 7-20.
  14. T. Horzum, E. G. Koçer, On some properties of Horadam polynomials, Int. Math. Forum, vol. 4, no. 25, 2009, 1243-1252.
  15. A. W. Kedzierawski, Some remarks on bi-univalent functions, Ann. Univ. Mariae Curie-Sk lodowska Sect. A, 39, 1985, 77-81.
  16. F. R. Keough, S. S. Miller, On the coefficients of Bazilevič functions, Proc. Amer. Math. Soc., 30, 1971, 492-496, https://doi.org/10.2307/2037722.
  17. P. K. Kulshrestha, Coefficients for alpha-convex univalent functions, Bull. Amer. Math. Soc., 80, 1974, 341-342, https://doi.org/10.1090/S0002-9904-1974-13494-4.
  18. M. Lewin, On a coefficient problem for bi-univalent functions, Proc. Amer. Math. Soc., 18, 1967, 63-68.
  19. N. Magesh, S. Bulut, Chebyshev polynomial coefficient estimates for a class of analytic bi-univalent functions related to pseudo-starlike functions, Afr. Mat., 29, 2018, 203-209, https://doi.org/10.1007/s13370-017-0535-3.
  20. S. S. Miller, On the Hardy class of a Bazilevič function and its derivative, Proc. Amer. Math. Soc., 30, 1971, 125-138, https://doi.org/10.2307/2038236.
  21. S. S. Miller, P. T. Mocanu, M. O. Reade, All α-convex functions are starlike, Rev. Roumaine Math. Pure Appl., 17, 1972, 1395-1397.
  22. S. S. Miller, P. T. Mocanu, M. O. Reade, All α-convex functions are univalent and starlike, Proc. Amer. Math. Soc., 37, 1973, 553-554, https://doi.org/10.1090/S0002-9939-1973-0313490-3.
  23. K. I. Noor, Bazilevič functions of type β, Internat. J. Math. Math. Sci., vol. 5, no. 2, 1982, 411-415, https://doi.org/10.1155/S0161171282000416.
  24. K. I. Noor, S. A. Al-Bany, On Bazilevič functions, Internat. J. Math. Math. Sci., vol. 10, no. 1, 1987, 79-88, https://doi.org/10.1155/S0161171287000103.
  25. K. I. Noor, S. A. Shah, A. Saliu, On generalized gamma-Bazilevič functions, Asian Euro J Math., vol. 14, no. 6, 2021, 1-8, https://doi.org/10.1142/S1793557121500935.
  26. S. Owa, M. Obradović, Certain subclasses of Bazilevič functions of type α, Internat. J. Math. Math. Sci., vol. 9, no. 2, 1986, 347-359, https://doi.org/10.1155/S0161171286000431.
  27. T. Panigrahi, J. Sokól, Generalized Laguerre polynomial bounds for subclass of bi-univalent functions, Jordan J. Math & Stat., vol. 14, no. 1, 2021, 127-140, https://doi.org/10.47013/14.1.7.
  28. N. L. Sharma, T. Bulboacă, Logarithmic coefficient bounds for the class of Bazilevič functions, Anal. Math. Phys., vol. 14, no. 52, 2024, 1-18, https://doi.org/10.1007/s13324-024-00909-y.
  29. R. Singh, On Bazilevič functions, Proc. Am. Math. Soc., 38, 1973, 261-271, https://doi.org/10.2307/2039275.
  30. H. M. Srivastava, S¸. Altınkaya, S. Yalçın, Certain subclasses of bi-univalent functions associated with the Horadam polynomials, Iran. J. Sci. Technol. Trans. A Sci., vol. 43, no. 4, 2019, 1873-1879, https://doi.org/10.1007/s40995-018-0647-0.
  31. H. M. Srivastava, S. Gaboury, F. Ghanim, Coefficient estimates for some general subclasses of analytic and bi-univalent functions, Afr. Mat., vol. 28, no. 5-6, 2017, 693-706, https://doi.org/10.1007/s13370-016-0478-0.
  32. H. M. Srivastava, S. Khan, Q. Z. Ahmad, N. Khan, S. Hussain, The Faber polynomial expansion method and its application to the general coefficient problem for some subclasses of bi-univalent functions associated with a certain q-integral operator, Stud. Univ. Babe¸s-Bolyai Math., vol. 63, no. 4, 2018, 419-436, https://doi.org/10.24193/subbmath.2018.4.01.
  33. H. M. Srivastava, A. K. Mishra, P. Gochhayat, Certain subclasses of analytic and bi-univalent functions, Appl. Math. Ltt., vol. 23, no. 10, 2010, 1188-1192, https://doi.org/10.1016/j.aml.2010.05.009.
  34. H. M. Srivastava, M. F. Sakar, G. H.Özlem, Some general coefficient estimates for a new class of analytic and bi-univalent functions defined by a linear combination, Filomat, vol. 32, no. 4, 2018, 1313-1322, https://doi.org/10.2298/fil1804313s.
  35. H. M. Srivastava, A. K. Wanas, H.Ö. Güney, New families of bi-univalent functions associated with the Bazilevič functions and the λ-pseudo-starlike functions, Iran. J. Sci. Technol. Trans. A Sci., vol. 45, no. 5, 2021, 1799-1804, https://doi.org/10.1007/s40995-021-01176-3.
  36. D. K. Thomas, On Bazilevič functions, Trans. Amer. Math. Soc., 132, 1968, 353-361, https://doi.org/10.2307/1994845.
  37. A. K. Wanas, A. Alb Lupas, Applications of Horadam polynomials on Bazilevič bi-univalent function satisfying subordinate conditions, J. Phys. Conf. Series, vol. 1294, no. 3, 2019, 1-6, https://doi.org/10.1088/1742-6596/1294/3/032003.
  38. A. K. Wanas, A. Alb Lupas, Applications of Laguerre polynomials on a new family of bi-prestarlike functions, Symmetry, vol. 14, no. 4, 2022, 1-10, https://doi.org/10.3390/sym14040645.
DOI: https://doi.org/10.2478/gm-2024-0008 | Journal eISSN: 1584-3289 | Journal ISSN: 1221-5023
Language: English
Page range: 1 - 15
Published on: May 15, 2025
Published by: Lucian Blaga University of Sibiu
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2025 Nagamangala Sathyananda Tejas, Halit Orhan, Dasanur Shivanna Raju, Nanjundan Magesh, published by Lucian Blaga University of Sibiu
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.